These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 26132207)

  • 1. Electrochemical Control of Rapid Bioorthogonal Tetrazine Ligations for Selective Functionalization of Microelectrodes.
    Ehret F; Wu H; Alexander SC; Devaraj NK
    J Am Chem Soc; 2015 Jul; 137(28):8876-9. PubMed ID: 26132207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in Tetrazine Bioorthogonal Chemistry Driven by the Synthesis of Novel Tetrazines and Dienophiles.
    Wu H; Devaraj NK
    Acc Chem Res; 2018 May; 51(5):1249-1259. PubMed ID: 29638113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical, enzymatic graphene biosensing of 5-aminosalicylic acid.
    Labroo P; Cui Y
    Analyst; 2013 Mar; 138(5):1325-8. PubMed ID: 23334062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid Bioorthogonal Chemistry Turn-on through Enzymatic or Long Wavelength Photocatalytic Activation of Tetrazine Ligation.
    Zhang H; Trout WS; Liu S; Andrade GA; Hudson DA; Scinto SL; Dicker KT; Li Y; Lazouski N; Rosenthal J; Thorpe C; Jia X; Fox JM
    J Am Chem Soc; 2016 May; 138(18):5978-83. PubMed ID: 27078610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic remodeling of bacterial surfaces via tetrazine ligations.
    Pidgeon SE; Pires MM
    Chem Commun (Camb); 2015 Jun; 51(51):10330-3. PubMed ID: 26027845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox enzymes immobilized on electrodes with solution cosubstrates. General procedure for simulation of time-resolved catalytic responses.
    Andrieux CP; Limoges B; Marchal D; Savéant JM
    Anal Chem; 2006 May; 78(9):3138-43. PubMed ID: 16643005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Caged cyclopropenes for controlling bioorthogonal reactivity.
    Kumar P; Jiang T; Li S; Zainul O; Laughlin ST
    Org Biomol Chem; 2018 Jun; 16(22):4081-4085. PubMed ID: 29790564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of an electrochemical platform based on the self-assembly of graphene oxide-multiwall carbon nanotube nanocomposite and horseradish peroxidase: direct electrochemistry and electrocatalysis.
    Zhang Q; Yang S; Zhang J; Zhang L; Kang P; Li J; Xu J; Zhou H; Song XM
    Nanotechnology; 2011 Dec; 22(49):494010. PubMed ID: 22101607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advancing Techniques for Investigating the Enzyme-Electrode Interface.
    Kornienko N; Ly KH; Robinson WE; Heidary N; Zhang JZ; Reisner E
    Acc Chem Res; 2019 May; 52(5):1439-1448. PubMed ID: 31042353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective functionalization of independently addressed microelectrodes by electrochemical activation and deactivation of a coupling catalyst.
    Devaraj NK; Dinolfo PH; Chidsey CE; Collman JP
    J Am Chem Soc; 2006 Feb; 128(6):1794-5. PubMed ID: 16464070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bioelectrochemical method for the quantitative description of the Hofmeister effect of ionic liquids in aqueous solution.
    Lu L; Hu Y; Huang X; Qu Y
    J Phys Chem B; 2012 Sep; 116(36):11075-80. PubMed ID: 22897433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical contacting of redox enzymes by means of oligoaniline-cross-linked enzyme/carbon nanotube composites.
    Baravik I; Tel-Vered R; Ovits O; Willner I
    Langmuir; 2009 Dec; 25(24):13978-83. PubMed ID: 19673510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosensing at disk microelectrode arrays. Inter-electrode functionalisation allows formatting into miniaturised sensing platforms of enhanced sensitivity.
    Baldrich E; Javier del Campo F; Muñoz FX
    Biosens Bioelectron; 2009 Dec; 25(4):920-6. PubMed ID: 19800216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing electron transfer at a cytochrome c-immobilized microelectrode and macroelectrode.
    Strauss E; Thomas B; Yau ST
    Langmuir; 2004 Sep; 20(20):8768-72. PubMed ID: 15379504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Horseradish peroxidase immobilization on carbon nanodots/CoFe layered double hydroxides: direct electrochemistry and hydrogen peroxide sensing.
    Wang Y; Wang Z; Rui Y; Li M
    Biosens Bioelectron; 2015 Feb; 64():57-62. PubMed ID: 25194796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordination-Assisted Bioorthogonal Chemistry: Orthogonal Tetrazine Ligation with Vinylboronic Acid and a Strained Alkene.
    Eising S; Xin BT; Kleinpenning F; Heming JJA; Florea BI; Overkleeft HS; Bonger KM
    Chembiochem; 2018 Aug; 19(15):1648-1652. PubMed ID: 29806887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modular Enzyme- and Light-Based Activation of Cyclopropene-Tetrazine Ligation.
    Jiang T; Kumar P; Huang W; Kao WS; Thompson AO; Camarda FM; Laughlin ST
    Chembiochem; 2019 Sep; 20(17):2222-2226. PubMed ID: 30990967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Horseradish peroxidase covalent grafting onto screen-printed carbon electrodes for levetiracetam chronoamperometric determination.
    Alonso-Lomillo MA; Domínguez-Renedo O; Hernández-Martín A; Arcos-Martínez MJ
    Anal Biochem; 2009 Dec; 395(1):86-90. PubMed ID: 19665443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly sensitive electrochemical label-free aptasensor based on dual electrocatalytic amplification of Pt-AuNPs and HRP.
    Bai L; Yuan R; Chai Y; Yuan Y; Mao L; Zhuo Y
    Analyst; 2011 May; 136(9):1840-5. PubMed ID: 21380419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new dynamic electrochemical transduction mechanism for interdigitated array microelectrodes.
    Zhu X; Choi JW; Ahn CH
    Lab Chip; 2004 Dec; 4(6):581-7. PubMed ID: 15570369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.