BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 26132209)

  • 1. Uranium Biominerals Precipitated by an Environmental Isolate of Serratia under Anaerobic Conditions.
    Newsome L; Morris K; Lloyd JR
    PLoS One; 2015; 10(7):e0132392. PubMed ID: 26132209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biostimulation by Glycerol Phosphate to Precipitate Recalcitrant Uranium(IV) Phosphate.
    Newsome L; Morris K; Trivedi D; Bewsher A; Lloyd JR
    Environ Sci Technol; 2015 Sep; 49(18):11070-8. PubMed ID: 26292021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of biological uranium reduction using magnetic resonance.
    Vogt SJ; Stewart BD; Seymour JD; Peyton BM; Codd SL
    Biotechnol Bioeng; 2012 Apr; 109(4):877-83. PubMed ID: 22095467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conceptual and numerical model of uranium(VI) reductive immobilization in fractured subsurface sediments.
    Roden EE; Scheibe TD
    Chemosphere; 2005 Apr; 59(5):617-28. PubMed ID: 15792659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotic dissolution of autunite under anaerobic conditions: effect of bicarbonates and Shewanella oneidensis MR1 microbial activity.
    Anagnostopoulos V; Katsenovich Y; Lee B; Lee HM
    Environ Geochem Health; 2020 Aug; 42(8):2547-2556. PubMed ID: 31858357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioreduction of hydrogen uranyl phosphate: mechanisms and U(IV) products.
    Rui X; Kwon MJ; O'Loughlin EJ; Dunham-Cheatham S; Fein JB; Bunker B; Kemner KM; Boyanov MI
    Environ Sci Technol; 2013 Jun; 47(11):5668-78. PubMed ID: 23634690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic bioremediation of hexavalent uranium in groundwater by reductive precipitation with methanogenic granular sludge.
    Tapia-Rodriguez A; Luna-Velasco A; Field JA; Sierra-Alvarez R
    Water Res; 2010 Apr; 44(7):2153-62. PubMed ID: 20060558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple mechanisms of uranium immobilization by Cellulomonas sp. strain ES6.
    Sivaswamy V; Boyanov MI; Peyton BM; Viamajala S; Gerlach R; Apel WA; Sani RK; Dohnalkova A; Kemner KM; Borch T
    Biotechnol Bioeng; 2011 Feb; 108(2):264-76. PubMed ID: 20872821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reoxidation of bioreduced uranium under reducing conditions.
    Wan J; Tokunaga TK; Brodie E; Wang Z; Zheng Z; Herman D; Hazen TC; Firestone MK; Sutton SR
    Environ Sci Technol; 2005 Aug; 39(16):6162-9. PubMed ID: 16173577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerobic uranium immobilization by Rhodanobacter A2-61 through formation of intracellular uranium-phosphate complexes.
    Sousa T; Chung AP; Pereira A; Piedade AP; Morais PV
    Metallomics; 2013 Apr; 5(4):390-7. PubMed ID: 23487302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uranium biomineralization induced by a metal tolerant Serratia strain under acid, alkaline and irradiated conditions.
    Chandwadkar P; Misra HS; Acharya C
    Metallomics; 2018 Aug; 10(8):1078-1088. PubMed ID: 29999065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uranium phosphate biomineralization by fungi.
    Liang X; Hillier S; Pendlowski H; Gray N; Ceci A; Gadd GM
    Environ Microbiol; 2015 Jun; 17(6):2064-75. PubMed ID: 25580878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A procedure for quantitation of total oxidized uranium for bioremediation studies.
    Elias DA; Senko JM; Krumholz LR
    J Microbiol Methods; 2003 Jun; 53(3):343-53. PubMed ID: 12689712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulating bioremediation of uranium-contaminated aquifers; uncertainty assessment of model parameters.
    Wang S; Jaffé PR; Li G; Wang SW; Rabitz HA
    J Contam Hydrol; 2003 Jul; 64(3-4):283-307. PubMed ID: 12814885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioreduction of uranium(VI) complexed with citric acid by Clostridia affects its structure and solubility.
    Francis AJ; Dodge CJ
    Environ Sci Technol; 2008 Nov; 42(22):8277-82. PubMed ID: 19068806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resistance of solid-phase U(VI) to microbial reduction during in situ bioremediation of uranium-contaminated groundwater.
    Ortiz-Bernad I; Anderson RT; Vrionis HA; Lovley DR
    Appl Environ Microbiol; 2004 Dec; 70(12):7558-60. PubMed ID: 15574961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-uraninite products of microbial U(VI) reduction.
    Bernier-Latmani R; Veeramani H; Vecchia ED; Junier P; Lezama-Pacheco JS; Suvorova EI; Sharp JO; Wigginton NS; Bargar JR
    Environ Sci Technol; 2010 Dec; 44(24):9456-62. PubMed ID: 21069950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition effect of secondary phosphate mineral precipitation on uranium release from contaminated sediments.
    Shi Z; Liu C; Zachara JM; Wang Z; Deng B
    Environ Sci Technol; 2009 Nov; 43(21):8344-9. PubMed ID: 19924967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerobic uranium (VI) bioprecipitation by metal-resistant bacteria isolated from radionuclide- and metal-contaminated subsurface soils.
    Martinez RJ; Beazley MJ; Taillefert M; Arakaki AK; Skolnick J; Sobecky PA
    Environ Microbiol; 2007 Dec; 9(12):3122-33. PubMed ID: 17991039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial removal of uranyl by sulfate reducing bacteria in the presence of Fe (III) (hydr)oxides.
    Zhengji Y
    J Environ Radioact; 2010 Sep; 101(9):700-5. PubMed ID: 20471727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.