These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 26132211)
41. Elimination of the coffee-ring effect by promoting particle adsorption and long-range interaction. Crivoi A; Duan F Langmuir; 2013 Oct; 29(39):12067-74. PubMed ID: 24015843 [TBL] [Abstract][Full Text] [Related]
42. The effect of particle wettability on the stick-slip motion of the contact line. Kim DO; Pack M; Rokoni A; Kaneelil P; Sun Y Soft Matter; 2018 Dec; 14(47):9599-9608. PubMed ID: 30457136 [TBL] [Abstract][Full Text] [Related]
43. Pinning and Depinning Dynamics of an Evaporating Sessile Droplet Containing Mono- and Bidispersed Colloidal Particles on a Nonheated/Heated Hydrophobic Substrate. Gupta S; Thombare MR; Patil ND Langmuir; 2023 Feb; 39(8):3102-3117. PubMed ID: 36800247 [TBL] [Abstract][Full Text] [Related]
44. Effect of particle geometry on triple line motion of nano-fluid drops and deposit nano-structuring. Askounis A; Sefiane K; Koutsos V; Shanahan ME Adv Colloid Interface Sci; 2015 Aug; 222():44-57. PubMed ID: 24927853 [TBL] [Abstract][Full Text] [Related]
45. Modulation of the coffee-ring effect in particle/surfactant mixtures: the importance of particle-interface interactions. Anyfantakis M; Geng Z; Morel M; Rudiuk S; Baigl D Langmuir; 2015 Apr; 31(14):4113-20. PubMed ID: 25797472 [TBL] [Abstract][Full Text] [Related]
46. Evaporation of Nanosuspensions on Substrates with Different Hydrophobicity. Perrin L; Pajor-Swierzy A; Magdassi S; Kamyshny A; Ortega F; Rubio RG ACS Appl Mater Interfaces; 2018 Jan; 10(3):3082-3093. PubMed ID: 29268600 [TBL] [Abstract][Full Text] [Related]
47. Numerical Analysis of the Dispersion and Deposition of Particles in Evaporating Sessile Droplets. Erdem AK; Denner F; Biancofiore L Langmuir; 2024 Jul; 40(26):13428-13445. PubMed ID: 38901041 [TBL] [Abstract][Full Text] [Related]
48. Fast evaporation of spreading droplets of colloidal suspensions. Maki KL; Kumar S Langmuir; 2011 Sep; 27(18):11347-63. PubMed ID: 21834573 [TBL] [Abstract][Full Text] [Related]
49. Evaporation of Initially Heated Sessile Droplets and the Resultant Dried Colloidal Deposits on Substrates Held at Ambient Temperature. Chatterjee S; Kumar M; Murallidharan JS; Bhardwaj R Langmuir; 2020 Jul; 36(29):8407-8421. PubMed ID: 32602342 [TBL] [Abstract][Full Text] [Related]
50. Alternative mechanism for coffee-ring deposition based on active role of free surface. Jafari Kang S; Vandadi V; Felske JD; Masoud H Phys Rev E; 2016 Dec; 94(6-1):063104. PubMed ID: 28085318 [TBL] [Abstract][Full Text] [Related]
51. Particle Size Determines the Shape of Supraparticles in Self-Lubricating Ternary Droplets. Thayyil Raju L; Koshkina O; Tan H; Riedinger A; Landfester K; Lohse D; Zhang X ACS Nano; 2021 Mar; 15(3):4256-4267. PubMed ID: 33601887 [TBL] [Abstract][Full Text] [Related]
52. Dynamic photocontrol of the coffee-ring effect with optically tunable particle stickiness. Anyfantakis M; Baigl D Angew Chem Int Ed Engl; 2014 Dec; 53(51):14077-81. PubMed ID: 25288180 [TBL] [Abstract][Full Text] [Related]
53. Impact of the collective diffusion of charged nanoparticles in the convective/capillary deposition directed by receding contact lines. Noguera-Marín D; Moraila-Martínez CL; Cabrerizo-Vílchez M; Rodríguez-Valverde MA Eur Phys J E Soft Matter; 2016 Feb; 39(2):20. PubMed ID: 26920523 [TBL] [Abstract][Full Text] [Related]
54. Kinetics of evaporation of colloidal dispersion drops on inclined surfaces. Hariharan S; Thampi SP; Basavaraj MG Soft Matter; 2023 Aug; 19(33):6213-6223. PubMed ID: 37382057 [TBL] [Abstract][Full Text] [Related]
55. Surfactant effects on droplet dynamics and deposition patterns: a lattice gas model. Jung N; Seo HW; Leo PH; Kim J; Kim P; Yoo CS Soft Matter; 2017 Sep; 13(37):6529-6541. PubMed ID: 28895608 [TBL] [Abstract][Full Text] [Related]