These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 26132311)

  • 1. Removal of Trace Elements by Cupric Oxide Nanoparticles from Uranium In Situ Recovery Bleed Water and Its Effect on Cell Viability.
    Schilz JR; Reddy KJ; Nair S; Johnson TE; Tjalkens RB; Krueger KP; Clark S
    J Vis Exp; 2015 Jun; (100):e52715. PubMed ID: 26132311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and biological evaluation of PEGylated CuO nanoparticles.
    Giannousi K; Hatzivassiliou E; Mourdikoudis S; Vourlias G; Pantazaki A; Dendrinou-Samara C
    J Inorg Biochem; 2016 Nov; 164():82-90. PubMed ID: 27665318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake and toxicity of copper oxide nanoparticles in cultured primary brain astrocytes.
    Bulcke F; Thiel K; Dringen R
    Nanotoxicology; 2014 Nov; 8(7):775-85. PubMed ID: 23889294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple cytotoxic and genotoxic effects induced in vitro by differently shaped copper oxide nanomaterials.
    Di Bucchianico S; Fabbrizi MR; Misra SK; Valsami-Jones E; Berhanu D; Reip P; Bergamaschi E; Migliore L
    Mutagenesis; 2013 May; 28(3):287-99. PubMed ID: 23462852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genotoxic effects of copper oxide nanoparticles in Neuro 2A cell cultures.
    Perreault F; Pedroso Melegari S; Henning da Costa C; de Oliveira Franco Rossetto AL; Popovic R; Gerson Matias W
    Sci Total Environ; 2012 Dec; 441():117-24. PubMed ID: 23137976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic properties of cupric oxide nanoparticles enable effective filtration of arsenic from water.
    McDonald KJ; Reynolds B; Reddy KJ
    Sci Rep; 2015 Jun; 5():11110. PubMed ID: 26047164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel arsenic removal process for water using cupric oxide nanoparticles.
    Reddy KJ; McDonald KJ; King H
    J Colloid Interface Sci; 2013 May; 397():96-102. PubMed ID: 23452518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a cloud point extraction approach for the preconcentration and quantification of trace CuO nanoparticles in environmental waters.
    Majedi SM; Kelly BC; Lee HK
    Anal Chim Acta; 2014 Mar; 814():39-48. PubMed ID: 24528842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of oxidative stress and histopathology in juvenile northern pike (Esox lucius) inhabiting lakes downstream of a uranium mill.
    Kelly JM; Janz DM
    Aquat Toxicol; 2009 May; 92(4):240-9. PubMed ID: 19304330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular insight to in vitro biocompatibility of phytofabricated copper oxide nanoparticles with human embryonic kidney cells.
    Kumari P; Panda PK; Jha E; Pramanik N; Nisha K; Kumari K; Soni N; Mallick MA; Verma SK
    Nanomedicine (Lond); 2018 Oct; 13(19):2415-2433. PubMed ID: 30251920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii.
    Perreault F; Oukarroum A; Melegari SP; Matias WG; Popovic R
    Chemosphere; 2012 Jun; 87(11):1388-94. PubMed ID: 22445953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uranium removal from groundwater by natural clinoptilolite zeolite: effects of pH and initial feed concentration.
    Camacho LM; Deng S; Parra RR
    J Hazard Mater; 2010 Mar; 175(1-3):393-8. PubMed ID: 19892465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper(II) oxide nanoparticles penetrate into HepG2 cells, exert cytotoxicity via oxidative stress and induce pro-inflammatory response.
    Piret JP; Jacques D; Audinot JN; Mejia J; Boilan E; Noël F; Fransolet M; Demazy C; Lucas S; Saout C; Toussaint O
    Nanoscale; 2012 Nov; 4(22):7168-84. PubMed ID: 23070296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Layered metal sulfides capture uranium from seawater.
    Manos MJ; Kanatzidis MG
    J Am Chem Soc; 2012 Oct; 134(39):16441-6. PubMed ID: 23009164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of arsenic(III) and arsenic(V) by cupric oxide nanoparticles.
    Martinson CA; Reddy KJ
    J Colloid Interface Sci; 2009 Aug; 336(2):406-11. PubMed ID: 19477461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of uranium and technetium sorption during titration of contaminated acidic groundwater.
    Zhang F; Parker JC; Brooks SC; Watson DB; Jardine PM; Gu B
    J Hazard Mater; 2010 Jun; 178(1-3):42-8. PubMed ID: 20116923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inorganic ligand-modified, colloid-enhanced ultrafiltration: a novel method for removing uranium from aqueous solution.
    Roach JD; Zapien JH
    Water Res; 2009 Oct; 43(18):4751-9. PubMed ID: 19698969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanosized copper oxide induces apoptosis through oxidative stress in podocytes.
    Xu J; Li Z; Xu P; Xiao L; Yang Z
    Arch Toxicol; 2013 Jun; 87(6):1067-73. PubMed ID: 22903339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite.
    Li ZJ; Wang L; Yuan LY; Xiao CL; Mei L; Zheng LR; Zhang J; Yang JH; Zhao YL; Zhu ZT; Chai ZF; Shi WQ
    J Hazard Mater; 2015 Jun; 290():26-33. PubMed ID: 25734531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii.
    Melegari SP; Perreault F; Costa RH; Popovic R; Matias WG
    Aquat Toxicol; 2013 Oct; 142-143():431-40. PubMed ID: 24113166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.