These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26132380)

  • 1. Metal-silicate Partitioning at High Pressure and Temperature: Experimental Methods and a Protocol to Suppress Highly Siderophile Element Inclusions.
    Bennett NR; Brenan JM; Fei Y
    J Vis Exp; 2015 Jun; (100):e52725. PubMed ID: 26132380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox systematics of a magma ocean with variable pressure-temperature gradients and composition.
    Righter K; Ghiorso MS
    Proc Natl Acad Sci U S A; 2012 Jul; 109(30):11955-60. PubMed ID: 22778438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for a late chondritic veneer in the Earth's mantle from high-pressure partitioning of palladium and platinum.
    Holzheid A; Sylvester P; O'Neill HS; Rubie DC; Palme HS
    Nature; 2000 Jul; 406(6794):396-9. PubMed ID: 10935633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accretion and core formation: constraints from metal-silicate partitioning.
    Wood BJ
    Philos Trans A Math Phys Eng Sci; 2008 Nov; 366(1883):4339-55. PubMed ID: 18826926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experiments on metal-silicate plumes and core formation.
    Olson P; Weeraratne D
    Philos Trans A Math Phys Eng Sci; 2008 Nov; 366(1883):4253-71. PubMed ID: 18826918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly siderophile element depletion in the Moon.
    Day JMD; Walker RJ
    Earth Planet Sci Lett; 2015 Aug; 423():114-124. PubMed ID: 34465923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Terrestrial accretion under oxidizing conditions.
    Siebert J; Badro J; Antonangeli D; Ryerson FJ
    Science; 2013 Mar; 339(6124):1194-7. PubMed ID: 23306436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconciling metal-silicate partitioning and late accretion in the Earth.
    Suer TA; Siebert J; Remusat L; Day JMD; Borensztajn S; Doisneau B; Fiquet G
    Nat Commun; 2021 May; 12(1):2913. PubMed ID: 34006864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly siderophile elements were stripped from Earth's mantle by iron sulfide segregation.
    Rubie DC; Laurenz V; Jacobson SA; Morbidelli A; Palme H; Vogel AK; Frost DJ
    Science; 2016 Sep; 353(6304):1141-4. PubMed ID: 27609889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-pressure and high-temperature experiments on core-mantle segregation in the accreting Earth.
    Hiligren VJ; Drake MJ; Rubie DC
    Science; 1994 Jun; 264(5164):1442-5. PubMed ID: 17838429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure-Induced Coordination Changes in a Pyrolitic Silicate Melt From Ab Initio Molecular Dynamics Simulations.
    Solomatova NV; Caracas R
    J Geophys Res Solid Earth; 2019 Nov; 124(11):11232-11250. PubMed ID: 32025456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fate of nitrogen during core-mantle separation on Earth.
    Grewal DS; Dasgupta R; Holmes AK; Costin G; Li Y; Tsuno K
    Geochim Cosmochim Acta; 2019 Apr; 251():87-115. PubMed ID: 35153302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accretion of the Earth and segregation of its core.
    Wood BJ; Walter MJ; Wade J
    Nature; 2006 Jun; 441(7095):825-33. PubMed ID: 16778882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partitioning of oxygen during core formation on the Earth and Mars.
    Rubie DC; Gessmann CK; Frost DJ
    Nature; 2004 May; 429(6987):58-61. PubMed ID: 15129278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The redox state of the mantle during and just after core formation.
    Frost DJ; Mann U; Asahara Y; Rubie DC
    Philos Trans A Math Phys Eng Sci; 2008 Nov; 366(1883):4315-37. PubMed ID: 18826924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-chondritic distribution of the highly siderophile elements in mantle sulphides.
    Alard O; Griffin WL; Lorand JP; Jackson SE; O'Reilly SY
    Nature; 2000 Oct; 407(6806):891-4. PubMed ID: 11057664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A diffusion mechanism for core-mantle interaction.
    Hayden LA; Watson EB
    Nature; 2007 Nov; 450(7170):709-11. PubMed ID: 18046408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Siderophile element constraints on the thermal history of the H chondrite parent body.
    Archer GJ; Walker RJ; Tino J; Blackburn T; Kruijer TS; Hellmann JL
    Geochim Cosmochim Acta; 2019 Jan; 245():556-576. PubMed ID: 30846885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly siderophile element constraints on accretion and differentiation of the Earth-Moon system.
    Day JM; Pearson DG; Taylor LA
    Science; 2007 Jan; 315(5809):217-9. PubMed ID: 17218521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aluminium control of argon solubility in silicate melts under pressure.
    Bouhifd MA; Jephcoat AP
    Nature; 2006 Feb; 439(7079):961-4. PubMed ID: 16495996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.