These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 26132552)

  • 1. Confocal Raman Microscopy for pH-Gradient Preconcentration and Quantitative Analyte Detection in Optically Trapped Phospholipid Vesicles.
    Hardcastle CD; Harris JM
    Anal Chem; 2015 Aug; 87(15):7979-86. PubMed ID: 26132552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confocal Raman microscopy of pH-gradient-based 10 000-fold preconcentration of compounds within individual, optically trapped phospholipid vesicles.
    Myers GA; Harris JM
    Anal Chem; 2011 Aug; 83(15):6098-105. PubMed ID: 21740010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic microscopy analysis of the interior pH of individual phospholipid vesicles.
    Heider EC; Myers GA; Harris JM
    Anal Chem; 2011 Nov; 83(21):8230-8. PubMed ID: 21962221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optically trapping confocal Raman microscopy of individual lipid vesicles: kinetics of phospholipase A(2)-catalyzed hydrolysis of phospholipids in the membrane bilayer.
    Cherney DP; Myers GA; Horton RA; Harris JM
    Anal Chem; 2006 Oct; 78(19):6928-35. PubMed ID: 17007516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical trapping of unilamellar phospholipid vesicles: investigation of the effect of optical forces on the lipid membrane shape by confocal-Raman microscopy.
    Cherney DP; Bridges TE; Harris JM
    Anal Chem; 2004 Sep; 76(17):4920-8. PubMed ID: 15373424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Confocal Raman microscopy probing of temperature-controlled release from individual, optically-trapped phospholipid vesicles.
    Schaefer JJ; Ma C; Harris JM
    Anal Chem; 2012 Nov; 84(21):9505-12. PubMed ID: 23043532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Confocal Raman Microscopy for in Situ Measurement of Phospholipid-Water Partitioning into Model Phospholipid Bilayers within Individual Chromatographic Particles.
    Kitt JP; Bryce DA; Minteer SD; Harris JM
    Anal Chem; 2018 Jun; 90(11):7048-7055. PubMed ID: 29757613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-controlled confocal Raman microscopy to detect phase transitions in phospholipid vesicles.
    Fox CB; Myers GA; Harris JM
    Appl Spectrosc; 2007 May; 61(5):465-9. PubMed ID: 17555614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical-trapping Raman microscopy detection of single unilamellar lipid vesicles.
    Cherney DP; Conboy JC; Harris JM
    Anal Chem; 2003 Dec; 75(23):6621-8. PubMed ID: 14640737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confocal Raman microscopy for investigating synthesis and characterization of individual optically trapped vinyl-polymerized surfactant particles.
    Schaefer JJ; Crawford AC; Porter MD; Harris JM
    Appl Spectrosc; 2014; 68(6):633-41. PubMed ID: 25014718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion gradient-induced membrane translocation of model peptides.
    de Kroon AI; Vogt B; van't Hof R; de Kruijff B; de Gier J
    Biophys J; 1991 Sep; 60(3):525-37. PubMed ID: 1932545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting phase transitions in phosphatidylcholine vesicles by Raman microscopy and self-modeling curve resolution.
    Fox CB; Uibel RH; Harris JM
    J Phys Chem B; 2007 Oct; 111(39):11428-36. PubMed ID: 17850068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of drug-membrane interactions in individual phospholipid vesicles by confocal Raman microscopy.
    Fox CB; Horton RA; Harris JM
    Anal Chem; 2006 Jul; 78(14):4918-24. PubMed ID: 16841911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of lysozyme charge influences interaction with phospholipid vesicles.
    Zschörnig O; Paasche G; Thieme C; Korb N; Arnold K
    Colloids Surf B Biointerfaces; 2005 Apr; 42(1):69-78. PubMed ID: 15784328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug permeability across a phospholipid vesicle-based barrier 2. Characterization of barrier structure, storage stability and stability towards pH changes.
    Flaten GE; Bunjes H; Luthman K; Brandl M
    Eur J Pharm Sci; 2006 Jul; 28(4):336-43. PubMed ID: 16697561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Confocal Raman microscopy for in situ detection of solid-phase extraction of pyrene into single C18-silica particles.
    Kitt JP; Harris JM
    Anal Chem; 2014 Feb; 86(3):1719-25. PubMed ID: 24397619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors affecting leakage of trapped solutes from phospholipid vesicles during thermotropic phase transitions.
    Hays LM; Crowe JH; Wolkers W; Rudenko S
    Cryobiology; 2001 Mar; 42(2):88-102. PubMed ID: 11448111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the encapsulation efficiency of individual vesicles using single-vesicle photolysis and confocal single-molecule detection.
    Sun B; Chiu DT
    Anal Chem; 2005 May; 77(9):2770-6. PubMed ID: 15859592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH-sensitive non-phospholipid vesicle and macrophage-like cells: binding, uptake and endocytotic pathway.
    Di Marzio L; Marianecci C; Cinque B; Nazzarri M; Cimini AM; Cristiano L; Cifone MG; Alhaique F; Carafa M
    Biochim Biophys Acta; 2008 Dec; 1778(12):2749-56. PubMed ID: 18762164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of positive and negative pH-gradients on the stability of small unilamellar vesicles of negatively charged phospholipids.
    Lin BZ; Yin CC; Hauser H
    Biochim Biophys Acta; 1993 Apr; 1147(2):237-44. PubMed ID: 8476917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.