These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26132565)

  • 1. New Hybrid Nanomaterial Based on Self-Assembly of Cyclodextrins and Cobalt Prussian Blue Analogue Nanocubes.
    Carvalho CL; Silva AT; Macedo LJ; Luz RA; Moita Neto JM; Rodrigues Filho UP; Cantanhêde W
    Int J Mol Sci; 2015 Jun; 16(7):14594-607. PubMed ID: 26132565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape-controlled synthesis of Prussian blue analogue Co3[Co(CN)6]2 nanocrystals.
    Cao M; Wu X; He X; Hu C
    Chem Commun (Camb); 2005 May; (17):2241-3. PubMed ID: 15856109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compact microcubic structures platform based on self-assembly Prussian blue nanoparticles with highly tuneable conductivity.
    Cantanhêde Silva W; Guix M; Alarcón Angeles G; Merkoçi A
    Phys Chem Chem Phys; 2010 Dec; 12(47):15505-11. PubMed ID: 20976355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembly mechanism of nanoparticles of Ni-based Prussian Blue analogues at the air/liquid interface: a synchrotron X-ray reflectivity study.
    Giner-Casares JJ; Clemente-León M; Coronado E; Brezesinski G
    Chemphyschem; 2015 Aug; 16(12):2549-55. PubMed ID: 26149661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorimetric determination of histidine by exploiting its inhibitory effect on the oxidation of thiamine by cobalt-containing Prussian Blue nanocubes.
    Yao Z; Liu H; Liu Y; Zhang Q; Diao Y; Sun Y; Li Z
    Mikrochim Acta; 2020 Jan; 187(1):93. PubMed ID: 31900676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Core-shell hybrid nanomaterial based on prussian blue and surface active maghemite nanoparticles as stable electrocatalyst.
    Magro M; Baratella D; Salviulo G; Polakova K; Zoppellaro G; Tucek J; Kaslik J; Zboril R; Vianello F
    Biosens Bioelectron; 2014 Feb; 52():159-65. PubMed ID: 24041662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new electrochemical immunosensor for sensitive detection of prion based on Prussian blue analogue.
    Li J; Yan X; Li X; Zhang X; Chen J
    Talanta; 2018 Mar; 179():726-733. PubMed ID: 29310300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetically separable Prussian blue analogue Mn₃[Co(CN)₆]₂·nH₂O porous nanocubes as excellent absorbents for heavy metal ions.
    Hu L; Mei JY; Chen QW; Zhang P; Yan N
    Nanoscale; 2011 Oct; 3(10):4270-4. PubMed ID: 21863190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-pot green synthesis of Prussian blue nanocubes decorated reduced graphene oxide using mushroom extract for efficient 4-nitrophenol reduction.
    Chen R; Zhang Q; Gu Y; Tang L; Li C; Zhang Z
    Anal Chim Acta; 2015 Jan; 853():579-587. PubMed ID: 25467506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A non-enzymatic electrochemical biosensor based on Au@PBA(Ni-Fe):MoS
    Zhang W; Wang C; Guan L; Peng M; Li K; Lin Y
    J Mater Chem B; 2019 Dec; 7(48):7704-7712. PubMed ID: 31754682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of cobalt-Prussian Blue nanoparticles in a biopolymer matrix.
    Collins AM; Mann S; Hall SR
    Nanoscale; 2010 Nov; 2(11):2370-2. PubMed ID: 20877859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prussian Blue Analogue-derived co/fe bimetallic nanoparticles immobilized on S/N-doped carbon sheet as a magnetic heterogeneous catalyst for activating peroxymonosulfate in water.
    Li MH; Lin KA; Yang MT; Thanh BX; Tsang DCW
    Chemosphere; 2020 Apr; 244():125444. PubMed ID: 31812052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of Native Cyclodextrins with Metal Ions and Inorganic Nanoparticles: Fertile Landscape for Chemistry and Materials Science.
    Prochowicz D; Kornowicz A; Lewiński J
    Chem Rev; 2017 Nov; 117(22):13461-13501. PubMed ID: 29048880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amperometric detection of antibiotic drug ciprofloxacin using cobalt-iron Prussian blue analogs capped on carbon nitride.
    Umesh NM; Jesila JAA; Wang SF
    Mikrochim Acta; 2021 Dec; 189(1):31. PubMed ID: 34931258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular polymeric materials via cyclodextrin-guest interactions.
    Harada A; Takashima Y; Nakahata M
    Acc Chem Res; 2014 Jul; 47(7):2128-40. PubMed ID: 24911321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prussian blue analogue derived magnetic carbon/cobalt/iron nanocomposite as an efficient and recyclable catalyst for activation of peroxymonosulfate.
    Lin KA; Chen BJ
    Chemosphere; 2017 Jan; 166():146-156. PubMed ID: 27693875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paper-based Chemiluminescence Device with Co-Fe Nanocubes for Sensitive Detection of Caffeic Acid.
    Zhang L; Hou Y; Guo X; Liu W; Lv C; Peng X; Zhang Z
    Anal Sci; 2021 Feb; 37(2):293-299. PubMed ID: 32863334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular host-guest interaction of trityl-nitroxide biradicals with cyclodextrins: modulation of spin-spin interaction and redox sensitivity.
    Tan X; Song Y; Liu H; Zhong Q; Rockenbauer A; Villamena FA; Zweier JL; Liu Y
    Org Biomol Chem; 2016 Feb; 14(5):1694-701. PubMed ID: 26700002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An enzyme-free immunosensor for sensitive determination of procalcitonin using NiFe PBA nanocubes@TB as the sensing matrix.
    Gao Z; Li Y; Zhang C; Zhang S; Jia Y; Dong Y
    Anal Chim Acta; 2020 Feb; 1097():169-175. PubMed ID: 31910957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox-switchable supramolecular graft polymer formation via ferrocene-cyclodextrin assembly.
    Szillat F; Schmidt BV; Hubert A; Barner-Kowollik C; Ritter H
    Macromol Rapid Commun; 2014 Jul; 35(14):1293-300. PubMed ID: 24753002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.