These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
448 related articles for article (PubMed ID: 26132593)
21. Nanosized IrO(x)-Ir Catalyst with Relevant Activity for Anodes of Proton Exchange Membrane Electrolysis Produced by a Cost-Effective Procedure. Lettenmeier P; Wang L; Golla-Schindler U; Gazdzicki P; Cañas NA; Handl M; Hiesgen R; Hosseiny SS; Gago AS; Friedrich KA Angew Chem Int Ed Engl; 2016 Jan; 55(2):742-6. PubMed ID: 26616747 [TBL] [Abstract][Full Text] [Related]
22. Strong-Coupled Cobalt Borate Nanosheets/Graphene Hybrid as Electrocatalyst for Water Oxidation Under Both Alkaline and Neutral Conditions. Chen P; Xu K; Zhou T; Tong Y; Wu J; Cheng H; Lu X; Ding H; Wu C; Xie Y Angew Chem Int Ed Engl; 2016 Feb; 55(7):2488-92. PubMed ID: 26757358 [TBL] [Abstract][Full Text] [Related]
23. Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. Sun Y; Liu C; Grauer DC; Yano J; Long JR; Yang P; Chang CJ J Am Chem Soc; 2013 Nov; 135(47):17699-702. PubMed ID: 24219808 [TBL] [Abstract][Full Text] [Related]
24. Structure-property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. Meng Y; Song W; Huang H; Ren Z; Chen SY; Suib SL J Am Chem Soc; 2014 Aug; 136(32):11452-64. PubMed ID: 25058174 [TBL] [Abstract][Full Text] [Related]
25. Engineering Lattice Oxygen Activation of Iridium Clusters Stabilized on Amorphous Bimetal Borides Array for Oxygen Evolution Reaction. Wang C; Zhai P; Xia M; Wu Y; Zhang B; Li Z; Ran L; Gao J; Zhang X; Fan Z; Sun L; Hou J Angew Chem Int Ed Engl; 2021 Dec; 60(52):27126-27134. PubMed ID: 34626056 [TBL] [Abstract][Full Text] [Related]
26. Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst. Song F; Hu X J Am Chem Soc; 2014 Nov; 136(47):16481-4. PubMed ID: 25380057 [TBL] [Abstract][Full Text] [Related]
27. In Situ Formation of Efficient Cobalt-Based Water Oxidation Catalysts from Co(2+)-Containing Tungstate and Molybdate Solutions. Zhang B; Wu X; Li F; Yu F; Wang Y; Sun L Chem Asian J; 2015 Oct; 10(10):2228-33. PubMed ID: 25827641 [TBL] [Abstract][Full Text] [Related]
28. Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir-Ni Oxide Catalysts for Electrochemical Water Splitting (OER). Reier T; Pawolek Z; Cherevko S; Bruns M; Jones T; Teschner D; Selve S; Bergmann A; Nong HN; Schlögl R; Mayrhofer KJ; Strasser P J Am Chem Soc; 2015 Oct; 137(40):13031-40. PubMed ID: 26355767 [TBL] [Abstract][Full Text] [Related]
29. Hybrids of iridium-cobalt phosphates as a highly efficient electrocatalyst for the oxygen evolution reaction in neutral solution. Wang Z; Lin Z; Diao P Chem Commun (Camb); 2019 Mar; 55(20):3000-3003. PubMed ID: 30785150 [TBL] [Abstract][Full Text] [Related]
30. Electrocatalytic Water Oxidation by MnO Melder J; Kwong WL; Shevela D; Messinger J; Kurz P ChemSusChem; 2017 Nov; 10(22):4491-4502. PubMed ID: 28869720 [TBL] [Abstract][Full Text] [Related]
31. Identification of a nonanuclear {Co(II)9} polyoxometalate cluster as a homogeneous catalyst for water oxidation. Goberna-Ferrón S; Vigara L; Soriano-López J; Galán-Mascarós JR Inorg Chem; 2012 Nov; 51(21):11707-15. PubMed ID: 23078372 [TBL] [Abstract][Full Text] [Related]
32. Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. Surendranath Y; Dinca M; Nocera DG J Am Chem Soc; 2009 Feb; 131(7):2615-20. PubMed ID: 19183057 [TBL] [Abstract][Full Text] [Related]
33. Insight into the Catalytic Activity of Amorphous Multimetallic Catalysts under a Magnetic Field toward the Oxygen Evolution Reaction. Jiang S; Chen F; Zhu L; Yang Z; Lin Y; Xu Q; Wang Y ACS Appl Mater Interfaces; 2022 Mar; 14(8):10227-10236. PubMed ID: 35171561 [TBL] [Abstract][Full Text] [Related]
34. Sloughing a Precursor Layer to Expose Active Stainless Steel Catalyst for Water Oxidation. Lee M; Jee MS; Lee SY; Cho MK; Ahn JP; Oh HS; Kim W; Hwang YJ; Min BK ACS Appl Mater Interfaces; 2018 Jul; 10(29):24499-24507. PubMed ID: 29962200 [TBL] [Abstract][Full Text] [Related]
35. Assembly of a Highly Active Iridium-Based Oxide Oxygen Evolution Reaction Catalyst by Using Metal-Organic Framework Self-Dissolution. Sun W; Tian X; Liao J; Deng H; Ma C; Ge C; Yang J; Huang W ACS Appl Mater Interfaces; 2020 Jul; 12(26):29414-29423. PubMed ID: 32496754 [TBL] [Abstract][Full Text] [Related]
36. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. Jin H; Wang J; Su D; Wei Z; Pang Z; Wang Y J Am Chem Soc; 2015 Feb; 137(7):2688-94. PubMed ID: 25658518 [TBL] [Abstract][Full Text] [Related]
37. The nature of lithium battery materials under oxygen evolution reaction conditions. Lee SW; Carlton C; Risch M; Surendranath Y; Chen S; Furutsuki S; Yamada A; Nocera DG; Shao-Horn Y J Am Chem Soc; 2012 Oct; 134(41):16959-62. PubMed ID: 23033962 [TBL] [Abstract][Full Text] [Related]
38. Anodic deposition of colloidal iridium oxide thin films from hexahydroxyiridate(IV) solutions. Zhao Y; Vargas-Barbosa NM; Hernandez-Pagan EA; Mallouk TE Small; 2011 Jul; 7(14):2087-93. PubMed ID: 21678551 [TBL] [Abstract][Full Text] [Related]
40. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. Lee Y; Suntivich J; May KJ; Perry EE; Shao-Horn Y J Phys Chem Lett; 2012 Feb; 3(3):399-404. PubMed ID: 26285858 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]