These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 26132732)

  • 1. Prescribed 3-D Direct Writing of Suspended Micron/Sub-micron Scale Fiber Structures via a Robotic Dispensing System.
    Yuan H; Cambron SD; Keynton RS
    J Vis Exp; 2015 Jun; (100):e52834. PubMed ID: 26132732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting and Trapping of a Single C. elegans Worm in a Microfluidic Chip for Automated Microplate Dispensing.
    Desta IT; Al-Sharif A; AlGharibeh N; Mustafa N; Orozaliev A; Giakoumidis N; Gunsalus KC; Song YA
    SLAS Technol; 2017 Aug; 22(4):431-436. PubMed ID: 27630097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pumpless dispensing of a droplet by breaking up a liquid bridge formed by electric induction.
    Hong JS; Lee BS; Moon D; Lee JG; Kang IS
    Electrophoresis; 2010 Apr; 31(8):1357-65. PubMed ID: 20301127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrohydrodynamic (EHD) dispensing of nanoliter DNA droplets for microarrays.
    Lee JG; Cho HJ; Huh N; Ko C; Lee WC; Jang YH; Lee BS; Kang IS; Choi JW
    Biosens Bioelectron; 2006 Jun; 21(12):2240-7. PubMed ID: 16384694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fluid property dependency on micro-fluidic characteristics in the deposition process for microfabrication.
    Chau SW; Hsu KL; Chen SC; Liou TM; Shih KC
    Biosens Bioelectron; 2004 Jul; 20(1):133-8. PubMed ID: 15142586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated, controlled deposition of nanoparticles on polyelectrolyte-coated silicon from chemomechanically patterned droplet arrays.
    Owen JI; Niederhauser TL; Wacaser BA; Christenson MP; Davis RC; Linford MR
    Lab Chip; 2004 Dec; 4(6):553-7. PubMed ID: 15570364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size-controlled fabrication of polydiacetylene-embedded microfibers on a microfluidic chip.
    Yoo I; Song S; Yoon B; Kim JM
    Macromol Rapid Commun; 2012 Aug; 33(15):1256-61. PubMed ID: 22528762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular soft robotic microdevices for dexterous biomanipulation.
    Özkale B; Parreira R; Bekdemir A; Pancaldi L; Özelçi E; Amadio C; Kaynak M; Stellacci F; Mooney DJ; Sakar MS
    Lab Chip; 2019 Feb; 19(5):778-788. PubMed ID: 30714604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Open microfluidic gel electrophoresis: Rapid and low cost separation and analysis of DNA at the nanoliter scale.
    Gutzweiler L; Gleichmann T; Tanguy L; Koltay P; Zengerle R; Riegger L
    Electrophoresis; 2017 Jul; 38(13-14):1764-1770. PubMed ID: 28426159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of a 3D graphite microball using a microfluidic droplet generator and its polymer composite with core-shell structure.
    Han DJ; Jung JH; Choi JS; Kim YT; Seo TS
    Lab Chip; 2013 Oct; 13(20):4006-10. PubMed ID: 23921454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DEP actuated nanoliter droplet dispensing using feedback control.
    Wang KL; Jones TB; Raisanen A
    Lab Chip; 2009 Apr; 9(7):901-9. PubMed ID: 19294300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous separation of particles using a microfluidic device equipped with flow rate control valves.
    Sai Y; Yamada M; Yasuda M; Seki M
    J Chromatogr A; 2006 Sep; 1127(1-2):214-20. PubMed ID: 16890945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Adhesion Conductive Sub-micron Fiber Cardiac Patch from Shape Memory Polymers to Promote Electrical Signal Transduction Function.
    Feng J; Shi H; Yang X; Xiao S
    ACS Appl Mater Interfaces; 2021 May; 13(17):19593-19602. PubMed ID: 33900060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct projection on dry-film photoresist (DP(2)): do-it-yourself three-dimensional polymer microfluidics.
    Zhao S; Cong H; Pan T
    Lab Chip; 2009 Apr; 9(8):1128-32. PubMed ID: 19350095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of embedded sub-micron pillar arrays in microfluidic channels on large DNA electrophoresis.
    Chan YC; Zohar Y; Lee YK
    Electrophoresis; 2009 Sep; 30(18):3242-9. PubMed ID: 19722207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated Robotic Dispensing Technique for Surface Guidance and Bioprinting of Cells.
    Bhuthalingam R; Lim PQ; Irvine SA; Venkatraman SS
    J Vis Exp; 2016 Nov; (117):. PubMed ID: 27911405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentration-controlled particle focusing in spiral elasto-inertial microfluidic devices.
    Xiang N; Ni Z; Yi H
    Electrophoresis; 2018 Jan; 39(2):417-424. PubMed ID: 28990196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic picoliter-scale translational spontaneous sample introduction for high-speed capillary electrophoresis.
    Zhang T; Fang Q; Du WB; Fu JL
    Anal Chem; 2009 May; 81(9):3693-8. PubMed ID: 19351143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and fabrication of uniquely shaped thiol-ene microfibers using a two-stage hydrodynamic focusing design.
    Boyd DA; Shields AR; Howell PB; Ligler FS
    Lab Chip; 2013 Aug; 13(15):3105-10. PubMed ID: 23756632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Four degree of freedom liquid dispenser for direct write capillary self-assembly with sub-nanoliter precision.
    Beroz J; Bedewy M; Reinker M; Chhajer V; Awtar S; Hart AJ
    Rev Sci Instrum; 2012 Jan; 83(1):015104. PubMed ID: 22299983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.