These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 26132732)

  • 21. Complete plastic nanofluidic devices for DNA analysis via direct imprinting with polymer stamps.
    Wu J; Chantiwas R; Amirsadeghi A; Soper SA; Park S
    Lab Chip; 2011 Sep; 11(17):2984-9. PubMed ID: 21779601
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acoustofluidics 19: ultrasonic microrobotics in cavities: devices and numerical simulation.
    Dual J; Hahn P; Leibacher I; Möller D; Schwarz T; Wang J
    Lab Chip; 2012 Oct; 12(20):4010-21. PubMed ID: 22971740
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system.
    Tan YC; Lee AP
    Lab Chip; 2005 Oct; 5(10):1178-83. PubMed ID: 16175277
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An acoustically driven microliter flow chamber on a chip (muFCC) for cell-cell and cell-surface interaction studies.
    Schneider MF; Guttenberg Z; Schneider SW; Sritharan K; Myles VM; Pamukci U; Wixforth A
    Chemphyschem; 2008 Mar; 9(4):641-5. PubMed ID: 18306189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Precise nanoliter fluid handling system with integrated high-speed flow sensor.
    Haber C; Boillat M; van der Schoot B
    Assay Drug Dev Technol; 2005 Apr; 3(2):203-12. PubMed ID: 15871694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment.
    Ker ED; Nain AS; Weiss LE; Wang J; Suhan J; Amon CH; Campbell PG
    Biomaterials; 2011 Nov; 32(32):8097-107. PubMed ID: 21820736
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D,L-lactic-co-glycolic acid) meshes.
    Bashur CA; Dahlgren LA; Goldstein AS
    Biomaterials; 2006 Nov; 27(33):5681-8. PubMed ID: 16914196
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Active droplet generation in microfluidics.
    Chong ZZ; Tan SH; Gañán-Calvo AM; Tor SB; Loh NH; Nguyen NT
    Lab Chip; 2016 Jan; 16(1):35-58. PubMed ID: 26555381
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Large-scale and highly efficient synthesis of micro- and nano-fibers with controlled fiber morphology by centrifugal jet spinning for tissue regeneration.
    Ren L; Pandit V; Elkin J; Denman T; Cooper JA; Kotha SP
    Nanoscale; 2013 Mar; 5(6):2337-45. PubMed ID: 23392606
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of iron oxide nanoparticles encapsulation within poly(d,l-lactide-co-glycolide) sub-micron particles.
    Okassa LN; Marchais H; Douziech-Eyrolles L; Hervé K; Cohen-Jonathan S; Munnier E; Soucé M; Linassier C; Dubois P; Chourpa I
    Eur J Pharm Biopharm; 2007 Aug; 67(1):31-8. PubMed ID: 17289360
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic operations using deformable polymer membranes fabricated by single layer soft lithography.
    Sundararajan N; Kim D; Berlin AA
    Lab Chip; 2005 Mar; 5(3):350-4. PubMed ID: 15726212
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved sensitivity and limit-of-detection of lateral flow devices using spatial constrictions of the flow-path.
    Katis IN; He PJW; Eason RW; Sones CL
    Biosens Bioelectron; 2018 Aug; 113():95-100. PubMed ID: 29738945
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthetic microfluidic paper: high surface area and high porosity polymer micropillar arrays.
    Hansson J; Yasuga H; Haraldsson T; van der Wijngaart W
    Lab Chip; 2016 Jan; 16(2):298-304. PubMed ID: 26646057
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DEP actuation of emulsion jets and dispensing of sub-nanoliter emulsion droplets.
    Prakash R; Kaler KV
    Lab Chip; 2009 Oct; 9(19):2836-44. PubMed ID: 19967122
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH; Hong JW; Lee DS; Yoon HC
    Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Calibration-Free, Noncontact, Disposable Liquid Dispensing Cartridge Featuring an Online Process Control.
    Bammesberger SB; Malki I; Ernst A; Zengerle R; Koltay P
    J Lab Autom; 2014 Aug; 19(4):394-402. PubMed ID: 23981469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative mapping of aqueous microfluidic temperature with sub-degree resolution using fluorescence lifetime imaging microscopy.
    Graham EM; Iwai K; Uchiyama S; de Silva AP; Magennis SW; Jones AC
    Lab Chip; 2010 May; 10(10):1267-73. PubMed ID: 20445879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel route to polymeric sub-micron fibers and their use as templates for inorganic structures.
    Qian L; Willneff E; Zhang H
    Chem Commun (Camb); 2009 Jul; (26):3946-8. PubMed ID: 19662261
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 4D Printed Actuators with Soft-Robotic Functions.
    López-Valdeolivas M; Liu D; Broer DJ; Sánchez-Somolinos C
    Macromol Rapid Commun; 2018 Mar; 39(5):. PubMed ID: 29210486
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics.
    Yamada M; Seki M
    Lab Chip; 2005 Nov; 5(11):1233-9. PubMed ID: 16234946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.