These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26132783)

  • 21. In vitro development of donated frozen-thawed human embryos in a prototype static microfluidic device: a randomized controlled trial.
    Kieslinger DC; Hao Z; Vergouw CG; Kostelijk EH; Lambalk CB; Le Gac S
    Fertil Steril; 2015 Mar; 103(3):680-6.e2. PubMed ID: 25572874
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of localized hypoxia on Drosophila embryo development.
    Wang Z; Oppegard SC; Eddington DT; Cheng J
    PLoS One; 2017; 12(9):e0185267. PubMed ID: 28934338
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-dimensional printed millifluidic devices for zebrafish embryo tests.
    Zhu F; Skommer J; Macdonald NP; Friedrich T; Kaslin J; Wlodkowic D
    Biomicrofluidics; 2015 Jul; 9(4):046502. PubMed ID: 26339325
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Bubble-Free Microfluidic Device for Easy-to-Operate Immobilization, Culturing and Monitoring of Zebrafish Embryos.
    Zhu Z; Geng Y; Yuan Z; Ren S; Liu M; Meng Z; Pan D
    Micromachines (Basel); 2019 Feb; 10(3):. PubMed ID: 30823425
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low-cost silicone imaging casts for zebrafish embryos and larvae.
    Masselink W; Wong JC; Liu B; Fu J; Currie PD
    Zebrafish; 2014 Feb; 11(1):26-31. PubMed ID: 24237049
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Zebrafish as a neurotoxicological model.
    Linney E; Upchurch L; Donerly S
    Neurotoxicol Teratol; 2004; 26(6):709-18. PubMed ID: 15451034
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fish embryo cell cultures for derivation of stem cells and transgenic chimeras.
    Collodi P; Kamei Y; Sharps A; Weber D; Barnes D
    Mol Mar Biol Biotechnol; 1992; 1(4-5):257-65. PubMed ID: 1308815
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wormometry-on-a-chip: Innovative technologies for in situ analysis of small multicellular organisms.
    Wlodkowic D; Khoshmanesh K; Akagi J; Williams DE; Cooper JM
    Cytometry A; 2011 Oct; 79(10):799-813. PubMed ID: 21548078
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic interface technology based on stereolithography for glass-based lab-on-a-chips.
    Han SI; Han KH
    Methods Mol Biol; 2013; 949():169-84. PubMed ID: 23329443
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery.
    Vladisavljević GT; Khalid N; Neves MA; Kuroiwa T; Nakajima M; Uemura K; Ichikawa S; Kobayashi I
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1626-63. PubMed ID: 23899864
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-Throughput Automated Chemical Screens in Zebrafish.
    Saydmohammed M; Tsang M
    Methods Mol Biol; 2018; 1683():383-393. PubMed ID: 29082504
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent lab-on-chip developments for novel drug discovery.
    Khalid N; Kobayashi I; Nakajima M
    Wiley Interdiscip Rev Syst Biol Med; 2017 Jul; 9(4):. PubMed ID: 28211993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An integrated platform for large-scale data collection and precise perturbation of live Drosophila embryos.
    Levario TJ; Zhao C; Rouse T; Shvartsman SY; Lu H
    Sci Rep; 2016 Feb; 6():21366. PubMed ID: 26864815
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic cell culture chip with multiplexed medium delivery and efficient cell/scaffold loading mechanisms for high-throughput perfusion 3-dimensional cell culture-based assays.
    Huang SB; Wu MH; Wang SS; Lee GB
    Biomed Microdevices; 2011 Jun; 13(3):415-30. PubMed ID: 21234690
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescence imaging of transgenic zebrafish embryos.
    Jontes JD; Emond MR
    Cold Spring Harb Protoc; 2012 May; 2012(5):. PubMed ID: 22550295
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic approach to evaluate specificity of small molecule drug candidates inhibiting PLK1 using zebrafish.
    Zhong H; Xin S; Zhao Y; Lu J; Li S; Gong J; Yang Z; Lin S
    Mol Biosyst; 2010 Aug; 6(8):1463-8. PubMed ID: 20625580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Modular Millifluidic Homeostatic Imaging Plate for Imaging of Larval Zebrafish.
    Friedrich T; Douek AM; Vandestadt C; Wlodkowic D; Kaslin J
    Zebrafish; 2019 Feb; 16(1):37-46. PubMed ID: 30422102
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Review of the Application of Body-on-a-Chip for Drug Test and Its Latest Trend of Incorporating Barrier Tissue.
    Jin H; Yu Y
    J Lab Autom; 2016 Oct; 21(5):615-24. PubMed ID: 26721822
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploiting Analysis of Heterogeneity to Increase the Information Content Extracted from Fluorescence Micrographs of Transgenic Zebrafish Embryos.
    Shun T; Gough AH; Sanker S; Hukriede NA; Vogt A
    Assay Drug Dev Technol; 2017; 15(6):257-266. PubMed ID: 28800244
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic devices for embryonic and larval zebrafish studies.
    Khalili A; Rezai P
    Brief Funct Genomics; 2019 Nov; 18(6):419-432. PubMed ID: 31034029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.