These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

814 related articles for article (PubMed ID: 26132789)

  • 21. A dual-modal magnetic nanoparticle probe for preoperative and intraoperative mapping of sentinel lymph nodes by magnetic resonance and near infrared fluorescence imaging.
    Zhou Z; Chen H; Lipowska M; Wang L; Yu Q; Yang X; Tiwari D; Yang L; Mao H
    J Biomater Appl; 2013 Jul; 28(1):100-11. PubMed ID: 23812946
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thoracoscopic color and fluorescence imaging system for sentinel lymph node mapping in porcine lung using indocyanine green-neomannosyl human serum albumin: intraoperative image-guided sentinel nodes navigation.
    Oh Y; Lee YS; Quan YH; Choi Y; Jeong JM; Kim BM; Kim HK
    Ann Surg Oncol; 2014 Apr; 21(4):1182-8. PubMed ID: 24310791
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A dendrimer-based nanosized contrast agent dual-labeled for magnetic resonance and optical fluorescence imaging to localize the sentinel lymph node in mice.
    Koyama Y; Talanov VS; Bernardo M; Hama Y; Regino CA; Brechbiel MW; Choyke PL; Kobayashi H
    J Magn Reson Imaging; 2007 Apr; 25(4):866-71. PubMed ID: 17345640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluorescence tomographic imaging of sentinel lymph node using near-infrared emitting bioreducible dextran nanogels.
    Li J; Jiang B; Lin C; Zhuang Z
    Int J Nanomedicine; 2014; 9():5667-82. PubMed ID: 25506217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intraoperative Fluorescence Imaging for Sentinel Lymph Node Detection: Prospective Clinical Trial to Compare the Usefulness of Indocyanine Green vs Technetium Tc 99m for Identification of Sentinel Lymph Nodes.
    Stoffels I; Dissemond J; Pöppel T; Schadendorf D; Klode J
    JAMA Surg; 2015 Jul; 150(7):617-23. PubMed ID: 26017057
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Noninvasive photoacoustic and fluorescence sentinel lymph node identification using dye-loaded perfluorocarbon nanoparticles.
    Akers WJ; Kim C; Berezin M; Guo K; Fuhrhop R; Lanza GM; Fischer GM; Daltrozzo E; Zumbusch A; Cai X; Wang LV; Achilefu S
    ACS Nano; 2011 Jan; 5(1):173-82. PubMed ID: 21171567
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tumor-targeting CuS nanoparticles for multimodal imaging and guided photothermal therapy of lymph node metastasis.
    Shi H; Yan R; Wu L; Sun Y; Liu S; Zhou Z; He J; Ye D
    Acta Biomater; 2018 May; 72():256-265. PubMed ID: 29588255
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Liu Q; Zhou M; Li P; Ku G; Huang G; Li C; Song S
    Contrast Media Mol Imaging; 2016 Nov; 11(6):475-481. PubMed ID: 27523742
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Near-Infrared Light and pH-Responsive Polypyrrole@Polyacrylic acid/Fluorescent Mesoporous Silica Nanoparticles for Imaging and Chemo-Photothermal Cancer Therapy.
    Zhang M; Wang T; Zhang L; Li L; Wang C
    Chemistry; 2015 Nov; 21(45):16162-71. PubMed ID: 26494031
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facile Synthesis of Gold Nanospheres Modified by Positively Charged Mesoporous Silica, Loaded with Near-Infrared Fluorescent Dye, for in Vivo X-ray Computed Tomography and Fluorescence Dual Mode Imaging.
    Song JT; Yang XQ; Zhang XS; Yan DM; Wang ZY; Zhao YD
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17287-97. PubMed ID: 26189815
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aggregation-induced near-infrared absorption of squaraine dye in an albumin nanocomplex for photoacoustic tomography in vivo.
    An FF; Deng ZJ; Ye J; Zhang JF; Yang YL; Li CH; Zheng CJ; Zhang XH
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17985-92. PubMed ID: 25223319
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Robotically assisted fluorescence-guided lymph node mapping with ICG for gynecologic malignancies: a feasibility study.
    Rossi EC; Ivanova A; Boggess JF
    Gynecol Oncol; 2012 Jan; 124(1):78-82. PubMed ID: 21996262
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats--volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging.
    Kim C; Song KH; Gao F; Wang LV
    Radiology; 2010 May; 255(2):442-50. PubMed ID: 20413757
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly bright aggregation-induced emission nanodots for precise photoacoustic/NIR-II fluorescence imaging-guided resection of neuroendocrine neoplasms and sentinel lymph nodes.
    Xu R; Jiao D; Long Q; Li X; Shan K; Kong X; Ou H; Ding D; Tang Q
    Biomaterials; 2022 Oct; 289():121780. PubMed ID: 36088677
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual-color photoacoustic lymph node imaging using nanoformulated naphthalocyanines.
    Lee C; Kim J; Zhang Y; Jeon M; Liu C; Song L; Lovell JF; Kim C
    Biomaterials; 2015 Dec; 73():142-8. PubMed ID: 26408999
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancement of the photostability and retention time of indocyanine green in sentinel lymph node mapping by anionic polyelectrolytes.
    Noh YW; Park HS; Sung MH; Lim YT
    Biomaterials; 2011 Sep; 32(27):6551-7. PubMed ID: 21663959
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo non-ionizing photoacoustic mapping of sentinel lymph nodes and bladders with ICG-enhanced carbon nanotubes.
    Koo J; Jeon M; Oh Y; Kang HW; Kim J; Kim C; Oh J
    Phys Med Biol; 2012 Dec; 57(23):7853-62. PubMed ID: 23151772
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Near infrared fluorescent chlorophyll nanoscale liposomes for sentinel lymph node mapping.
    Fan L; Wu Q; Chu M
    Int J Nanomedicine; 2012; 7():3071-80. PubMed ID: 22787402
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Silica-coated gold nanoplates as stable photoacoustic contrast agents for sentinel lymph node imaging.
    Luke GP; Bashyam A; Homan KA; Makhija S; Chen YS; Emelianov SY
    Nanotechnology; 2013 Nov; 24(45):455101. PubMed ID: 24121616
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prolonged Dye Release from Mesoporous Silica-Based Imaging Probes Facilitates Long-Term Optical Tracking of Cell Populations In Vivo.
    Rosenholm JM; Gulin-Sarfraz T; Mamaeva V; Niemi R; Özliseli E; Desai D; Antfolk D; von Haartman E; Lindberg D; Prabhakar N; Näreoja T; Sahlgren C
    Small; 2016 Mar; 12(12):1578-92. PubMed ID: 26807551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 41.