BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 26133241)

  • 1. Homo-FRET Based Biosensors and Their Application to Multiplexed Imaging of Signalling Events in Live Cells.
    Warren SC; Margineanu A; Katan M; Dunsby C; French PM
    Int J Mol Sci; 2015 Jun; 16(7):14695-716. PubMed ID: 26133241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence lifetime readouts of Troponin-C-based calcium FRET sensors: a quantitative comparison of CFP and mTFP1 as donor fluorophores.
    Laine R; Stuckey DW; Manning H; Warren SC; Kennedy G; Carling D; Dunsby C; Sardini A; French PM
    PLoS One; 2012; 7(11):e49200. PubMed ID: 23152874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Booster, a Red-Shifted Genetically Encoded Förster Resonance Energy Transfer (FRET) Biosensor Compatible with Cyan Fluorescent Protein/Yellow Fluorescent Protein-Based FRET Biosensors and Blue Light-Responsive Optogenetic Tools.
    Watabe T; Terai K; Sumiyama K; Matsuda M
    ACS Sens; 2020 Mar; 5(3):719-730. PubMed ID: 32101394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Red-edge anisotropy microscopy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells.
    Squire A; Verveer PJ; Rocks O; Bastiaens PI
    J Struct Biol; 2004 Jul; 147(1):62-9. PubMed ID: 15109606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging of Genetically Encoded FRET-Based Biosensors to Detect GPCR Activity.
    Bordes L; Chavez-Abiega S; Goedhart J
    Methods Mol Biol; 2021; 2268():159-178. PubMed ID: 34085268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence Anisotropy as a Self-Referencing Readout for Ion-Selective Sensing and Imaging Using Homo-FRET between Chromoionophores.
    Huang W; Guo C; Zhai J; Xie X
    Anal Chem; 2022 Jul; 94(27):9793-9800. PubMed ID: 35772106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homotransfer of FRET Reporters for Live Cell Imaging.
    Snell NE; Rao VP; Seckinger KM; Liang J; Leser J; Mancini AE; Rizzo MA
    Biosensors (Basel); 2018 Oct; 8(4):. PubMed ID: 30314323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualization of small GTPase activity with fluorescence resonance energy transfer-based biosensors.
    Aoki K; Matsuda M
    Nat Protoc; 2009; 4(11):1623-31. PubMed ID: 19834477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-color, ratiometric biosensors for detecting signaling activities in live cells.
    Ross BL; Tenner B; Markwardt ML; Zviman A; Shi G; Kerr JP; Snell NE; McFarland JJ; Mauban JR; Ward CW; Rizzo MA; Zhang J
    Elife; 2018 Jul; 7():. PubMed ID: 29968564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence resonance energy transfer imaging of cell signaling from in vitro to in vivo: basis of biosensor construction, live imaging, and image processing.
    Aoki K; Kamioka Y; Matsuda M
    Dev Growth Differ; 2013 May; 55(4):515-22. PubMed ID: 23387795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ion-insensitive cAMP biosensor for long term quantitative ratiometric fluorescence resonance energy transfer (FRET) measurements under variable physiological conditions.
    Salonikidis PS; Niebert M; Ullrich T; Bao G; Zeug A; Richter DW
    J Biol Chem; 2011 Jul; 286(26):23419-31. PubMed ID: 21454618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of recombination between YFP and CFP genes of FRET biosensors introduced by lentiviral or retroviral gene transfer.
    Komatsubara AT; Matsuda M; Aoki K
    Sci Rep; 2015 Aug; 5():13283. PubMed ID: 26290434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence anisotropy imaging microscopy for homo-FRET in living cells.
    Tramier M; Coppey-Moisan M
    Methods Cell Biol; 2008; 85():395-414. PubMed ID: 18155472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a spectrally diverse set of fluorescent proteins as FRET acceptors for mTurquoise2.
    Mastop M; Bindels DS; Shaner NC; Postma M; Gadella TWJ; Goedhart J
    Sci Rep; 2017 Sep; 7(1):11999. PubMed ID: 28931898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FRET microscopy for real-time monitoring of signaling events in live cells using unimolecular biosensors.
    Sprenger JU; Perera RK; Götz KR; Nikolaev VO
    J Vis Exp; 2012 Aug; (66):e4081. PubMed ID: 22929080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crowding Effects on Energy-Transfer Efficiencies of Hetero-FRET Probes As Measured Using Time-Resolved Fluorescence Anisotropy.
    Leopold HJ; Leighton R; Schwarz J; Boersma AJ; Sheets ED; Heikal AA
    J Phys Chem B; 2019 Jan; 123(2):379-393. PubMed ID: 30571116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence resonance energy transfer and anisotropy reveals both hetero- and homo-energy transfer in the pleckstrin homology-domain and the parathyroid hormone-receptor.
    Steinmeyer R; Harms GS
    Microsc Res Tech; 2009 Jan; 72(1):12-21. PubMed ID: 18785253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of hierarchical relationship of Src and Rac at subcellular locations with FRET biosensors.
    Ouyang M; Sun J; Chien S; Wang Y
    Proc Natl Acad Sci U S A; 2008 Sep; 105(38):14353-8. PubMed ID: 18799748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetically encoded FRET-based biosensors for multiparameter fluorescence imaging.
    Carlson HJ; Campbell RE
    Curr Opin Biotechnol; 2009 Feb; 20(1):19-27. PubMed ID: 19223167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Vivo Quantification of Intramolecular FRET Using RacFRET Biosensors.
    Bosch M; Kardash E
    Methods Mol Biol; 2019; 2040():275-297. PubMed ID: 31432484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.