BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 26133445)

  • 1. Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects.
    Liu Y; Hu C; Huang J; Sumpter BG; Qiao R
    J Chem Phys; 2015 Jun; 142(24):244703. PubMed ID: 26133445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of non-covalent functionalization on the thermal conductance of graphene/organic interfaces.
    Lin S; Buehler MJ
    Nanotechnology; 2013 Apr; 24(16):165702. PubMed ID: 23535514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bimodal Control of Heat Transport at Graphene-Metal Interfaces Using Disorder in Graphene.
    Kim J; Khan ME; Ko JH; Kim JH; Lee ES; Suh J; Wu J; Kim YH; Park JY; Lyeo HK
    Sci Rep; 2016 Oct; 6():34428. PubMed ID: 27698372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achieving Huge Thermal Conductance of Metallic Nitride on Graphene Through Enhanced Elastic and Inelastic Phonon Transmission.
    Zheng W; Huang B; Li H; Koh YK
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35487-35494. PubMed ID: 30226044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing the Thermal Conductivity of Graphene-Polyamide-6,6 Nanocomposites by Surface-Grafted Polymer Chains: Calculation with Molecular Dynamics and Effective-Medium Approximation.
    Gao Y; Müller-Plathe F
    J Phys Chem B; 2016 Feb; 120(7):1336-46. PubMed ID: 26800434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlocal thermal transport across embedded few-layer graphene sheets.
    Liu Y; Huxtable ST; Yang B; Sumpter BG; Qiao R
    J Phys Condens Matter; 2014 Dec; 26(50):502101. PubMed ID: 25393230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Multiscale Investigation on the Thermal Transport in Polydimethylsiloxane Nanocomposites: Graphene vs. Borophene.
    Di Pierro A; Mortazavi B; Noori H; Rabczuk T; Fina A
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34064564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymeric Self-Assembled Monolayers Anomalously Improve Thermal Transport across Graphene/Polymer Interfaces.
    Zhang L; Liu L
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28949-28958. PubMed ID: 28766936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat dissipation at a graphene-substrate interface.
    Xu Z; Buehler MJ
    J Phys Condens Matter; 2012 Nov; 24(47):475305. PubMed ID: 23123865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-Interface Defects in Graphene/H-BN In-Plane Heterostructures: Insights into the Interfacial Thermal Transport.
    Zhang N; Zhou B; Li D; Qi D; Wu Y; Zheng H; Yang B
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal transport across the CoSb
    Yin K; Shi L; Zhong Y; Ma X; Li M; He X
    Phys Chem Chem Phys; 2023 Jan; 25(3):2517-2522. PubMed ID: 36602119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of interfacial thermal transport across graphene and an organic semiconductor using molecular dynamics simulations.
    Wang X; Zhang J; Chen Y; Chan PKL
    Phys Chem Chem Phys; 2017 Jun; 19(24):15933-15941. PubMed ID: 28590478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of phonon scattering by substitutional and structural defects on thermal conductivity of 2D graphene.
    Lee BS
    J Phys Condens Matter; 2018 Jul; 30(29):295302. PubMed ID: 29873305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometry and temperature effects of the interfacial thermal conductance in copper- and nickel-graphene nanocomposites.
    Chang SW; Nair AK; Buehler MJ
    J Phys Condens Matter; 2012 Jun; 24(24):245301. PubMed ID: 22611110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced Thermal Transport in the Graphene/MoS
    Srinivasan S; Balasubramanian G
    Langmuir; 2018 Mar; 34(10):3326-3335. PubMed ID: 29429341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phonon transport at the interfaces of vertically stacked graphene and hexagonal boron nitride heterostructures.
    Yan Z; Chen L; Yoon M; Kumar S
    Nanoscale; 2016 Feb; 8(7):4037-46. PubMed ID: 26817419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of vacancy defects on the interfacial thermal resistance of partially overlapped bilayer graphene.
    Wang BC; Cao Q; Shao W; Cui Z
    Phys Chem Chem Phys; 2022 Mar; 24(9):5546-5554. PubMed ID: 35174847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corrugated epitaxial graphene/SiC interfaces: photon excitation and probing.
    Tang X; Xu S; Wang X
    Nanoscale; 2014 Aug; 6(15):8822-30. PubMed ID: 24956035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal Transport in Graphene Oxide Films: Theoretical Analysis and Molecular Dynamics Simulation.
    Yang Y; Zhong D; Liu Y; Meng D; Wang L; Wei N; Ren G; Yan R; Kang Y
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32046079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Remote Interfacial Phonon (RIP) Scattering in Heat Transport Across Graphene/SiO
    Koh YK; Lyons AS; Bae MH; Huang B; Dorgan VE; Cahill DG; Pop E
    Nano Lett; 2016 Oct; 16(10):6014-6020. PubMed ID: 27585088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.