These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 26133474)

  • 1. Microalgal cell disruption in a high-power ultrasonic flow system.
    Wang M; Yuan W
    Bioresour Technol; 2015 Oct; 193():171-7. PubMed ID: 26133474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microalgal cell disruption via ultrasonic nozzle spraying.
    Wang M; Yuan W
    Appl Biochem Biotechnol; 2015 Jan; 175(2):1111-22. PubMed ID: 25369896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of microalgal cells using high-frequency focused ultrasound.
    Wang M; Yuan W; Jiang X; Jing Y; Wang Z
    Bioresour Technol; 2014 Feb; 153():315-21. PubMed ID: 24374364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional Simulation of Ultrasound-Induced Microalgal Cell Disruption.
    Wang M; Yuan W; Hale A
    Appl Biochem Biotechnol; 2016 Mar; 178(6):1184-95. PubMed ID: 26660670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling bubble dynamics and radical kinetics in ultrasound induced microalgal cell disruption.
    Wang M; Yuan W
    Ultrason Sonochem; 2016 Jan; 28():7-14. PubMed ID: 26384877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding pH and ionic strength effects on aluminum sulfate-induced microalgae flocculation.
    Cui Y; Yuan W; Cheng J
    Appl Biochem Biotechnol; 2014 Aug; 173(7):1692-702. PubMed ID: 24840040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of microalgae cell disruption by ultrasonic treatment.
    Gerde JA; Montalbo-Lomboy M; Yao L; Grewell D; Wang T
    Bioresour Technol; 2012 Dec; 125():175-81. PubMed ID: 23026331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subcritical n-hexane/isopropanol extraction of lipid from wet microalgal pastes of Scenedesmus obliquus.
    Bian X; Jin W; Gu Q; Zhou X; Xi Y; Tu R; Han SF; Xie GJ; Gao SH; Wang Q
    World J Microbiol Biotechnol; 2018 Feb; 34(3):39. PubMed ID: 29460187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An investigation of ultrasound effect on microalgal cell integrity and lipid extraction efficiency.
    Keris-Sen UD; Sen U; Soydemir G; Gurol MD
    Bioresour Technol; 2014; 152():407-13. PubMed ID: 24321606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of bead milling parameters for the cell disruption of microalgae: process modeling and application to Porphyridium cruentum and Nannochloropsis oculata.
    Montalescot V; Rinaldi T; Touchard R; Jubeau S; Frappart M; Jaouen P; Bourseau P; Marchal L
    Bioresour Technol; 2015 Nov; 196():339-46. PubMed ID: 26253918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of cell disruption methods on the extraction of bioactive metabolites from microalgal biomass.
    Stirk WA; Bálint P; Vambe M; Lovász C; Molnár Z; van Staden J; Ördög V
    J Biotechnol; 2020 Jan; 307():35-43. PubMed ID: 31678206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of BODIPY505/515 lipid fluorescence method for applications in biofuel-directed microalgae production.
    Brennan L; Blanco Fernández A; Mostaert AS; Owende P
    J Microbiol Methods; 2012 Aug; 90(2):137-43. PubMed ID: 22521923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic cavitation for disruption of microalgae.
    Greenly JM; Tester JW
    Bioresour Technol; 2015 May; 184():276-279. PubMed ID: 25435064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective screening of Scenedesmus sp. from environmental microalgae communities using optimal sonication conditions predicted by statistical parameters of fluorescence-activated cell sorting.
    La HJ; Lee JY; Kim SG; Choi GG; Ahn CY; Oh HM
    Bioresour Technol; 2012 Jun; 114():478-83. PubMed ID: 22459962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of staining conditions for microalgae with three lipophilic dyes to reduce precipitation and fluorescence variability.
    Cirulis JT; Strasser BC; Scott JA; Ross GM
    Cytometry A; 2012 Jul; 81(7):618-26. PubMed ID: 22648989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction of lipids from microalgae by ultrasound application: prospection of the optimal extraction method.
    Araujo GS; Matos LJ; Fernandes JO; Cartaxo SJ; Gonçalves LR; Fernandes FA; Farias WR
    Ultrason Sonochem; 2013 Jan; 20(1):95-8. PubMed ID: 22938999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical cell disruption for lipid extraction from microalgal biomass.
    Halim R; Rupasinghe TW; Tull DL; Webley PA
    Bioresour Technol; 2013 Jul; 140():53-63. PubMed ID: 23672939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How to use Nile Red, a selective fluorescent stain for microalgal neutral lipids.
    Alemán-Nava GS; Cuellar-Bermudez SP; Cuaresma M; Bosma R; Muylaert K; Ritmann BE; Parra R
    J Microbiol Methods; 2016 Sep; 128():74-79. PubMed ID: 27432343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of the standard addition method for the absolute quantification of neutral lipids in microalgae using Nile red.
    Bertozzini E; Galluzzi L; Penna A; Magnani M
    J Microbiol Methods; 2011 Oct; 87(1):17-23. PubMed ID: 21767582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of microalga Scenedesmus dimorphus mutant with higher lipid content by radiation breeding.
    Choi JI; Yoon M; Joe M; Park H; Lee SG; Han SJ; Lee PC
    Bioprocess Biosyst Eng; 2014 Dec; 37(12):2437-44. PubMed ID: 24871276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.