These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 26133476)

  • 1. Pyrolysis of microalgal biomass in carbon dioxide environment.
    Cho SH; Kim KH; Jeon YJ; Kwon EE
    Bioresour Technol; 2015 Oct; 193():185-91. PubMed ID: 26133476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced thermal destruction of toxic microalgal biomass by using CO2.
    Jung JM; Lee J; Kim J; Kim KH; Kim HW; Jeon YJ; Kwon EE
    Sci Total Environ; 2016 Oct; 566-567():575-583. PubMed ID: 27236623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermo-chemical process with sewage sludge by using CO2.
    Kwon EE; Yi H; Kwon HH
    J Environ Manage; 2013 Oct; 128():435-40. PubMed ID: 23792821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon dioxide assisted sustainability enhancement of pyrolysis of waste biomass: A case study with spent coffee ground.
    Cho DW; Cho SH; Song H; Kwon EE
    Bioresour Technol; 2015; 189():1-6. PubMed ID: 25864025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergetic sustainability enhancement via utilization of carbon dioxide as carbon neutral chemical feedstock in the thermo-chemical processing of biomass.
    Kwon EE; Cho SH; Kim S
    Environ Sci Technol; 2015 Apr; 49(8):5028-34. PubMed ID: 25799374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation into role of CO
    Kim Y; Lee J; Yi H; Fai Tsang Y; Kwon EE
    Bioresour Technol; 2019 Jan; 272():48-53. PubMed ID: 30308407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of nickel/biochar composite from pyrolysis of Microcystis aeruginosa and its practical use for syngas production.
    Lee T; Nam IH; Jung S; Park YK; Kwon EE
    Bioresour Technol; 2020 Mar; 300():122712. PubMed ID: 31911316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New candidate for biofuel feedstock beyond terrestrial biomass for thermo-chemical process (pyrolysis/gasification) enhanced by carbon dioxide (CO2).
    Kwon EE; Jeon YJ; Yi H
    Bioresour Technol; 2012 Nov; 123():673-7. PubMed ID: 22939597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of carbon dioxide on the thermal degradation of lignocellulosic biomass.
    Kwon EE; Jeon EC; Castaldi MJ; Jeon YJ
    Environ Sci Technol; 2013 Sep; 47(18):10541-7. PubMed ID: 23991835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermogravimetric analysis of the gasification of microalgae Chlorella vulgaris.
    Figueira CE; Moreira PF; Giudici R
    Bioresour Technol; 2015 Dec; 198():717-24. PubMed ID: 26447558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The characteristic and evaluation method of fast pyrolysis of microalgae to produce syngas.
    Hu Z; Ma X; Li L
    Bioresour Technol; 2013 Jul; 140():220-6. PubMed ID: 23693148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gasification kinetics of raw and wet-torrefied microalgae Chlorella vulgaris ESP-31 in carbon dioxide.
    Bach QV; Chen WH; Sheen HK; Chang JS
    Bioresour Technol; 2017 Nov; 244(Pt 2):1393-1399. PubMed ID: 28390786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation into the impact of CO2 co-feed on pyrolysis and gasification.
    Kwon E; Kim S
    Chemosphere; 2010 Aug; 80(8):957-63. PubMed ID: 20546843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apparent kinetics of high temperature oxidative decomposition of microalgal biomass.
    Ali SA; Razzak SA; Hossain MM
    Bioresour Technol; 2015 Jan; 175():569-77. PubMed ID: 25459869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic pyrolysis of swine manure using CO
    Lee DJ; Jeong KH; Lee DH; Lee SH; Jung MW; Jang YN; Jo GG; Kwag JH; Yi H; Park YK; Kwon EE
    Environ Int; 2019 Dec; 133(Pt B):105204. PubMed ID: 31639602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological CO2 fixation using Chlorella vulgaris and its thermal characteristics through thermogravimetric analysis.
    Razzak SA; Ali SA; Hossain MM; Mouanda AN
    Bioprocess Biosyst Eng; 2016 Nov; 39(11):1651-8. PubMed ID: 27307068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orange peel valorization by pyrolysis under the carbon dioxide environment.
    Kwon D; Oh JI; Lam SS; Moon DH; Kwon EE
    Bioresour Technol; 2019 Aug; 285():121356. PubMed ID: 31005642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon dioxide (CO
    Kassim MA; Meng TK
    Sci Total Environ; 2017 Apr; 584-585():1121-1129. PubMed ID: 28169025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving high carbon dioxide tolerance and carbon dioxide fixation capability of Chlorella sp. by adaptive laboratory evolution.
    Li D; Wang L; Zhao Q; Wei W; Sun Y
    Bioresour Technol; 2015 Jun; 185():269-75. PubMed ID: 25776894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of Chlorella vulgaris as a source of essential fatty acids in a tubular photobioreactor continuously fed with air enriched with CO2 at different concentrations.
    Ortiz Montoya EY; Casazza AA; Aliakbarian B; Perego P; Converti A; de Carvalho JC
    Biotechnol Prog; 2014; 30(4):916-22. PubMed ID: 24532479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.