BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1173 related articles for article (PubMed ID: 26133632)

  • 1. Performance of today's dual energy CT and future multi energy CT in virtual non-contrast imaging and in iodine quantification: A simulation study.
    Faby S; Kuchenbecker S; Sawall S; Simons D; Schlemmer HP; Lell M; Kachelrieß M
    Med Phys; 2015 Jul; 42(7):4349-66. PubMed ID: 26133632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy-integrating-detector multi-energy CT: Implementation and a phantom study.
    Ren L; Allmendinger T; Halaweish A; Schmidt B; Flohr T; McCollough CH; Yu L
    Med Phys; 2021 Sep; 48(9):4857-4871. PubMed ID: 33988849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A unified material decomposition framework for quantitative dual- and triple-energy CT imaging.
    Zhao W; Vernekohl D; Han F; Han B; Peng H; Yang Y; Xing L; Min JK
    Med Phys; 2018 Jul; 45(7):2964-2977. PubMed ID: 29679500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-energy CT imaging for large patients using dual-source photon-counting detector CT.
    Tao S; Marsh JF; Tao A; Michalak GJ; Rajendran K; McCollough CH; Leng S
    Phys Med Biol; 2020 Aug; 65(17):17NT01. PubMed ID: 32503022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of liver fat in the presence of iron and iodine: an ex-vivo dual-energy CT study.
    Fischer MA; Gnannt R; Raptis D; Reiner CS; Clavien PA; Schmidt B; Leschka S; Alkadhi H; Goetti R
    Invest Radiol; 2011 Jun; 46(6):351-8. PubMed ID: 21263329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exact dual energy material decomposition from inconsistent rays (MDIR).
    Maass C; Meyer E; Kachelriess M
    Med Phys; 2011 Feb; 38(2):691-700. PubMed ID: 21452706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative accuracy and dose efficiency of dual-contrast imaging using dual-energy CT: a phantom study.
    Ren L; Rajendran K; McCollough CH; Yu L
    Med Phys; 2020 Feb; 47(2):441-456. PubMed ID: 31705664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulse pileup statistics for energy discriminating photon counting x-ray detectors.
    Wang AS; Harrison D; Lobastov V; Tkaczyk JE
    Med Phys; 2011 Jul; 38(7):4265-75. PubMed ID: 21859028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral material characterization with dual-energy CT: comparison of commercial and investigative technologies in phantoms.
    Gabbai M; Leichter I; Mahgerefteh S; Sosna J
    Acta Radiol; 2015 Aug; 56(8):960-9. PubMed ID: 25182803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual energy CT reconstruction using the constrained one step spectral image reconstruction algorithm.
    Rizzo BM; Sidky EY; Schmidt TG
    Med Phys; 2024 Apr; 51(4):2648-2664. PubMed ID: 37837648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility of multi-contrast imaging on dual-source photon counting detector (PCD) CT: An initial phantom study.
    Tao S; Rajendran K; McCollough CH; Leng S
    Med Phys; 2019 Sep; 46(9):4105-4115. PubMed ID: 31215659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation dose efficiency of multi-energy photon-counting-detector CT for dual-contrast imaging.
    Ren L; Rajendran K; McCollough CH; Yu L
    Phys Med Biol; 2019 Dec; 64(24):245003. PubMed ID: 31703217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative material decomposition using spectral computed tomography with an energy-resolved photon-counting detector.
    Lee S; Choi YN; Kim HJ
    Phys Med Biol; 2014 Sep; 59(18):5457-82. PubMed ID: 25164993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of unconstrained three-material decomposition: imaging an excised human heart using a prototype silicon photon-counting CT detector.
    Grönberg F; Lundberg J; Sjölin M; Persson M; Bujila R; Bornefalk H; Almqvist H; Holmin S; Danielsson M
    Eur Radiol; 2020 Nov; 30(11):5904-5912. PubMed ID: 32588212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Bayesian approach to solve proton stopping powers from noisy multi-energy CT data.
    Lalonde A; Bär E; Bouchard H
    Med Phys; 2017 Oct; 44(10):5293-5302. PubMed ID: 28752662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technical performance of a dual-energy CT system with a novel deep-learning based reconstruction process: Evaluation using an abdomen protocol.
    Oostveen LJ; Boedeker KL; Balta C; Shin D; de Lange F; Prokop M; Sechopoulos I
    Med Phys; 2023 Mar; 50(3):1378-1389. PubMed ID: 36502496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual energy CT with photon counting and dual source systems: comparative evaluation.
    Atak H; Shikhaliev PM
    Phys Med Biol; 2015 Dec; 60(23):8949-75. PubMed ID: 26539971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study of a dual-energy-like imaging technique based on counting-integrating readout.
    Roessl E; Herrmann C; Kraft E; Proksa R
    Med Phys; 2011 Dec; 38(12):6416-28. PubMed ID: 22149825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of spectral separation: an assessment of dual-energy spectral separation for quantitative ability and dose efficiency.
    Krauss B; Grant KL; Schmidt BT; Flohr TG
    Invest Radiol; 2015 Feb; 50(2):114-8. PubMed ID: 25373305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-source photon counting detector CT with a tin filter: a phantom study on iodine quantification performance.
    Tao A; Huang R; Tao S; Michalak GJ; McCollough CH; Leng S
    Phys Med Biol; 2019 May; 64(11):115019. PubMed ID: 31018197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 59.