These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

921 related articles for article (PubMed ID: 26133635)

  • 21. Focusing of therapeutic ultrasound through a human skull: a numerical study.
    Sun J; Hynynen K
    J Acoust Soc Am; 1998 Sep; 104(3 Pt 1):1705-15. PubMed ID: 9745750
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Implementation of a Skull-Conformal Phased Array for Transcranial Focused Ultrasound Therapy.
    Adams C; Jones RM; Yang SD; Kan WM; Leung K; Zhou Y; Lee KU; Huang Y; Hynynen K
    IEEE Trans Biomed Eng; 2021 Nov; 68(11):3457-3468. PubMed ID: 33950835
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Blood-brain barrier: real-time feedback-controlled focused ultrasound disruption by using an acoustic emissions-based controller.
    O'Reilly MA; Hynynen K
    Radiology; 2012 Apr; 263(1):96-106. PubMed ID: 22332065
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Establishing sheep as an experimental species to validate ultrasound-mediated blood-brain barrier opening for potential therapeutic interventions.
    Pelekanos M; Leinenga G; Odabaee M; Odabaee M; Saifzadeh S; Steck R; Götz J
    Theranostics; 2018; 8(9):2583-2602. PubMed ID: 29721100
    [No Abstract]   [Full Text] [Related]  

  • 25. Non-invasive transcranial ultrasound therapy based on a 3D CT scan: protocol validation and in vitro results.
    Marquet F; Pernot M; Aubry JF; Montaldo G; Marsac L; Tanter M; Fink M
    Phys Med Biol; 2009 May; 54(9):2597-613. PubMed ID: 19351986
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An Acoustic Measurement Library for Non-Invasive Trans-Rodent Skull Ultrasonic Focusing at High Frequency.
    Rahimi S; Jones RM; Hynynen K
    IEEE Trans Biomed Eng; 2022 Jul; 69(7):2184-2191. PubMed ID: 34951839
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice.
    Choi JJ; Pernot M; Small SA; Konofagou EE
    Ultrasound Med Biol; 2007 Jan; 33(1):95-104. PubMed ID: 17189051
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison between MR and CT imaging used to correct for skull-induced phase aberrations during transcranial focused ultrasound.
    Leung SA; Moore D; Gilbo Y; Snell J; Webb TD; Meyer CH; Miller GW; Ghanouni P; Butts Pauly K
    Sci Rep; 2022 Aug; 12(1):13407. PubMed ID: 35927449
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced microbubble contrast agent oscillation following 250 kHz insonation.
    Ilovitsh T; Ilovitsh A; Foiret J; Caskey CF; Kusunose J; Fite BZ; Zhang H; Mahakian LM; Tam S; Butts-Pauly K; Qin S; Ferrara KW
    Sci Rep; 2018 Nov; 8(1):16347. PubMed ID: 30397280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A super-resolution ultrasound method for brain vascular mapping.
    O'Reilly MA; Hynynen K
    Med Phys; 2013 Nov; 40(11):110701. PubMed ID: 24320408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new safety index based on intrapulse monitoring of ultra-harmonic cavitation during ultrasound-induced blood-brain barrier opening procedures.
    Novell A; Kamimura HAS; Cafarelli A; Gerstenmayer M; Flament J; Valette J; Agou P; Conti A; Selingue E; Aron Badin R; Hantraye P; Larrat B
    Sci Rep; 2020 Jun; 10(1):10088. PubMed ID: 32572103
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of nonlinear ultrasound propagation on high intensity brain therapy.
    Pinton G; Aubry JF; Fink M; Tanter M
    Med Phys; 2011 Mar; 38(3):1207-16. PubMed ID: 21520833
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identifying the inertial cavitation threshold and skull effects in a vessel phantom using focused ultrasound and microbubbles.
    Tung YS; Choi JJ; Baseri B; Konofagou EE
    Ultrasound Med Biol; 2010 May; 36(5):840-52. PubMed ID: 20420973
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heterogeneous Angular Spectrum Method for Trans-Skull Imaging and Focusing.
    Schoen S; Arvanitis CD
    IEEE Trans Med Imaging; 2020 May; 39(5):1605-1614. PubMed ID: 31751231
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbubble Localization for Three-Dimensional Superresolution Ultrasound Imaging Using Curve Fitting and Deconvolution Methods.
    Foroozan F; O'Reilly MA; Hynynen K
    IEEE Trans Biomed Eng; 2018 Dec; 65(12):2692-2703. PubMed ID: 29993387
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound.
    Mueller JK; Ai L; Bansal P; Legon W
    J Neural Eng; 2017 Dec; 14(6):066012. PubMed ID: 28777075
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simulations and measurements of transcranial low-frequency ultrasound therapy: skull-base heating and effective area of treatment.
    Pulkkinen A; Huang Y; Song J; Hynynen K
    Phys Med Biol; 2011 Aug; 56(15):4661-83. PubMed ID: 21734333
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A non-invasive method for focusing ultrasound through the human skull.
    Clement GT; Hynynen K
    Phys Med Biol; 2002 Apr; 47(8):1219-36. PubMed ID: 12030552
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Method to optimize the placement of a single-element transducer for transcranial focused ultrasound.
    Park TY; Pahk KJ; Kim H
    Comput Methods Programs Biomed; 2019 Oct; 179():104982. PubMed ID: 31443869
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measurements of the Relationship Between CT Hounsfield Units and Acoustic Velocity and How It Changes With Photon Energy and Reconstruction Method.
    Webb TD; Leung SA; Rosenberg J; Ghanouni P; Dahl JJ; Pelc NJ; Pauly KB
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jul; 65(7):1111-1124. PubMed ID: 29993366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 47.