BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 26133775)

  • 1. Molecular Pathways: Overcoming Radiation Resistance by Targeting DNA Damage Response Pathways.
    Morgan MA; Lawrence TS
    Clin Cancer Res; 2015 Jul; 21(13):2898-904. PubMed ID: 26133775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting base excision repair as a sensitization strategy in radiotherapy.
    Vens C; Begg AC
    Semin Radiat Oncol; 2010 Oct; 20(4):241-9. PubMed ID: 20832016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular Pathways in Response to Ionizing Radiation and Their Targetability for Tumor Radiosensitization.
    Maier P; Hartmann L; Wenz F; Herskind C
    Int J Mol Sci; 2016 Jan; 17(1):. PubMed ID: 26784176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular targets that sensitize cancer to radiation killing: From the bench to the bedside.
    Sriramulu S; Thoidingjam S; Brown SL; Siddiqui F; Movsas B; Nyati S
    Biomed Pharmacother; 2023 Feb; 158():114126. PubMed ID: 36521246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The novel chemical entity YTR107 inhibits recruitment of nucleophosmin to sites of DNA damage, suppressing repair of DNA double-strand breaks and enhancing radiosensitization.
    Sekhar KR; Reddy YT; Reddy PN; Crooks PA; Venkateswaran A; McDonald WH; Geng L; Sasi S; Van Der Waal RP; Roti JL; Salleng KJ; Rachakonda G; Freeman ML
    Clin Cancer Res; 2011 Oct; 17(20):6490-9. PubMed ID: 21878537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer.
    Huang RX; Zhou PK
    Signal Transduct Target Ther; 2020 May; 5(1):60. PubMed ID: 32355263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clofarabine acts as radiosensitizer in vitro and in vivo by interfering with DNA damage response.
    Cariveau MJ; Stackhouse M; Cui XL; Tiwari K; Waud W; Secrist JA; Xu B
    Int J Radiat Oncol Biol Phys; 2008 Jan; 70(1):213-20. PubMed ID: 18037589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of Parp1 by BMN673 Effectively Sensitizes Cells to Radiotherapy by Upsetting the Balance of Repair Pathways Processing DNA Double-Strand Breaks.
    Soni A; Li F; Wang Y; Grabos M; Krieger LM; Chaudhary S; Hasan MSM; Ahmed M; Coleman CN; Teicher BA; Piekarz RL; Wang D; Iliakis GE
    Mol Cancer Ther; 2018 Oct; 17(10):2206-2216. PubMed ID: 29970481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting DNA Double-Strand Break (DSB) Repair to Counteract Tumor Radio-resistance.
    Zhao Y; Chen S
    Curr Drug Targets; 2019; 20(9):891-902. PubMed ID: 30806313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA double strand break repair inhibition as a cause of heat radiosensitization: re-evaluation considering backup pathways of NHEJ.
    Iliakis G; Wu W; Wang M
    Int J Hyperthermia; 2008 Feb; 24(1):17-29. PubMed ID: 18214766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(ADP-ribose) polymerase inhibition as a model for synthetic lethality in developing radiation oncology targets.
    Chalmers AJ; Lakshman M; Chan N; Bristow RG
    Semin Radiat Oncol; 2010 Oct; 20(4):274-81. PubMed ID: 20832020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperative effect of BI-69A11 and celecoxib enhances radiosensitization by modulating DNA damage repair in colon carcinoma.
    Pal I; Dey KK; Chaurasia M; Parida S; Das S; Rajesh Y; Sharma K; Chowdhury T; Mandal M
    Tumour Biol; 2016 May; 37(5):6389-402. PubMed ID: 26631035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA damage response (DDR) pathway engagement in cisplatin radiosensitization of non-small cell lung cancer.
    Sears CR; Cooney SA; Chin-Sinex H; Mendonca MS; Turchi JJ
    DNA Repair (Amst); 2016 Apr; 40():35-46. PubMed ID: 26991853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorodeoxyuridine-induced radiosensitization and inhibition of DNA double strand break repair in human colon cancer cells.
    Bruso CE; Shewach DS; Lawrence TS
    Int J Radiat Oncol Biol Phys; 1990 Dec; 19(6):1411-7. PubMed ID: 2148170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of cell cycle perturbations in the combination therapy of chemotherapeutic agents and radiation.
    Pauwels B; Wouters A; Peeters M; Vermorken JB; Lardon F
    Future Oncol; 2010 Sep; 6(9):1485-96. PubMed ID: 20919831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radioprotection and cell cycle arrest of intestinal epithelial cells by darinaparsin, a tumor radiosensitizer.
    Tian J; Doi H; Saar M; Santos J; Li X; Peehl DM; Knox SJ
    Int J Radiat Oncol Biol Phys; 2013 Dec; 87(5):1179-85. PubMed ID: 24210080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular targets and mechanisms of radiosensitization using DNA damage response pathways.
    Raleigh DR; Haas-Kogan DA
    Future Oncol; 2013 Feb; 9(2):219-33. PubMed ID: 23414472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Newly developed strategies for improving sensitivity to radiation by targeting signal pathways in cancer therapy.
    Ding M; Zhang E; He R; Wang X
    Cancer Sci; 2013 Nov; 104(11):1401-10. PubMed ID: 23930697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resveratrol enhances ionizing radiation-induced premature senescence in lung cancer cells.
    Luo H; Wang L; Schulte BA; Yang A; Tang S; Wang GY
    Int J Oncol; 2013 Dec; 43(6):1999-2006. PubMed ID: 24141489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging strategies to target cancer metabolism and improve radiation therapy outcomes.
    Kery M; Papandreou I
    Br J Radiol; 2020 Nov; 93(1115):20200067. PubMed ID: 32462882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.