These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 26133803)

  • 1. Hand interception of occluded motion in humans: a test of model-based vs. on-line control.
    La Scaleia B; Zago M; Lacquaniti F
    J Neurophysiol; 2015 Sep; 114(3):1577-92. PubMed ID: 26133803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural extrapolation of motion for a ball rolling down an inclined plane.
    La Scaleia B; Lacquaniti F; Zago M
    PLoS One; 2014; 9(6):e99837. PubMed ID: 24940874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catching what we can't see: manual interception of occluded fly-ball trajectories.
    Bosco G; Delle Monache S; Lacquaniti F
    PLoS One; 2012; 7(11):e49381. PubMed ID: 23166653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visuomotor Interactions and Perceptual Judgments in Virtual Reality Simulating Different Levels of Gravity.
    La Scaleia B; Ceccarelli F; Lacquaniti F; Zago M
    Front Bioeng Biotechnol; 2020; 8():76. PubMed ID: 32133351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential contributions to the interception of occluded ballistic trajectories by the temporoparietal junction, area hMT/V5+, and the intraparietal cortex.
    Delle Monache S; Lacquaniti F; Bosco G
    J Neurophysiol; 2017 Sep; 118(3):1809-1823. PubMed ID: 28701531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Internal models of target motion: expected dynamics overrides measured kinematics in timing manual interceptions.
    Zago M; Bosco G; Maffei V; Iosa M; Ivanenko YP; Lacquaniti F
    J Neurophysiol; 2004 Apr; 91(4):1620-34. PubMed ID: 14627663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptations of lateral hand movements to early and late visual occlusion in catching.
    Dessing JC; Oostwoud Wijdenes L; Peper CL; Beek PJ
    Exp Brain Res; 2009 Feb; 192(4):669-82. PubMed ID: 18936928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intercepting virtual balls approaching under different gravity conditions: evidence for spatial prediction.
    Russo M; Cesqui B; La Scaleia B; Ceccarelli F; Maselli A; Moscatelli A; Zago M; Lacquaniti F; d'Avella A
    J Neurophysiol; 2017 Oct; 118(4):2421-2434. PubMed ID: 28768737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of interception of moving targets by chimpanzees (Pan troglodytes) in an automated task.
    Iversen IH; Matsuzawa T
    Anim Cogn; 2003 Sep; 6(3):169-83. PubMed ID: 12761656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mental imagery of gravitational motion.
    Gravano S; Zago M; Lacquaniti F
    Cortex; 2017 Oct; 95():172-191. PubMed ID: 28910670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Internal model of gravity for hand interception: parametric adaptation to zero-gravity visual targets on Earth.
    Zago M; Lacquaniti F
    J Neurophysiol; 2005 Aug; 94(2):1346-57. PubMed ID: 15817649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of roll visual motion on online control of arm movement: reaching within a dynamic virtual environment.
    Dvorkin AY; Kenyon RV; Keshner EA
    Exp Brain Res; 2009 Feb; 193(1):95-107. PubMed ID: 18936925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extrapolation of vertical target motion through a brief visual occlusion.
    Zago M; Iosa M; Maffei V; Lacquaniti F
    Exp Brain Res; 2010 Mar; 201(3):365-84. PubMed ID: 19882150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral ball interception: hand movements during linear ball trajectories.
    Arzamarski R; Harrison SJ; Hajnal A; Michaels CF
    Exp Brain Res; 2007 Mar; 177(3):312-23. PubMed ID: 16957883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lateral interception II: predicting hand movements.
    Michaels CF; Jacobs DM; Bongers RM
    J Exp Psychol Hum Percept Perform; 2006 Apr; 32(2):459-72. PubMed ID: 16634682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual perception and interception of falling objects: a review of evidence for an internal model of gravity.
    Zago M; Lacquaniti F
    J Neural Eng; 2005 Sep; 2(3):S198-208. PubMed ID: 16135884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural prediction of complex accelerations for object interception.
    de Rugy A; Marinovic W; Wallis G
    J Neurophysiol; 2012 Feb; 107(3):766-71. PubMed ID: 22090456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Keep your eyes on the ball: smooth pursuit eye movements enhance prediction of visual motion.
    Spering M; Schütz AC; Braun DI; Gegenfurtner KR
    J Neurophysiol; 2011 Apr; 105(4):1756-67. PubMed ID: 21289135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motion extrapolation and velocity transposition.
    Sokolov AN; Ehrenstein WH; Pavlova MA; Cavonius CR
    Perception; 1997; 26(7):875-89. PubMed ID: 9509140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal tuning of motor cortical neurons for hand position and velocity.
    Paninski L; Fellows MR; Hatsopoulos NG; Donoghue JP
    J Neurophysiol; 2004 Jan; 91(1):515-32. PubMed ID: 13679402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.