These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 26133875)

  • 1. A cable-driven wrist robotic rehabilitator using a novel torque-field controller for human motion training.
    Chen W; Cui X; Zhang J; Wang J
    Rev Sci Instrum; 2015 Jun; 86(6):065109. PubMed ID: 26133875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive velocity field control of a forearm-wrist rehabilitation robot.
    Erdogan A; Satici AC; Patoglu V
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975433. PubMed ID: 22275634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. System characterization of RiceWrist-S: a forearm-wrist exoskeleton for upper extremity rehabilitation.
    Pehlivan AU; Rose C; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650462. PubMed ID: 24187279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a self-aligning 3-DOF actuated exoskeleton for diagnosis and training of wrist and forearm after stroke.
    Beekhuis JH; Westerveld AJ; van der Kooij H; Stienen AH
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650357. PubMed ID: 24187176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3DOM: a 3 degree of freedom manipulandum to investigate redundant motor control.
    Klein J; Roach N; Burdet E
    IEEE Trans Haptics; 2014; 7(2):229-39. PubMed ID: 24968384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of Wrist Gimbal: a forearm and wrist exoskeleton for stroke rehabilitation.
    Martinez JA; Ng P; Lu S; Campagna MS; Celik O
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650459. PubMed ID: 24187276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A wrist and finger force sensor module for use during movements of the upper limb in chronic hemiparetic stroke.
    Miller LC; Ruiz-Torres R; Stienen AH; Dewald JP
    IEEE Trans Biomed Eng; 2009 Sep; 56(9):2312-7. PubMed ID: 19567336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking.
    van Dijk W; van der Kooij H; Koopman B; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650393. PubMed ID: 24187212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cable-driven locomotor training system for restoration of gait in human SCI.
    Wu M; Hornby TG; Landry JM; Roth H; Schmit BD
    Gait Posture; 2011 Feb; 33(2):256-60. PubMed ID: 21232961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust Control of a Cable-Driven Soft Exoskeleton Joint for Intrinsic Human-Robot Interaction.
    Jarrett C; McDaid AJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):976-986. PubMed ID: 28278475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical design of a distal arm exoskeleton for stroke and spinal cord injury rehabilitation.
    Pehlivan AU; Celik O; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975428. PubMed ID: 22275629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and characterization of the OpenWrist: A robotic wrist exoskeleton for coordinated hand-wrist rehabilitation.
    Pezent E; Rose CG; Deshpande AD; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():720-725. PubMed ID: 28813905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An advanced rehabilitation robotic system for augmenting healthcare.
    Hu J; Lim YJ; Ding Y; Paluska D; Solochek A; Laffery D; Bonato P; Marchessault R
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2073-6. PubMed ID: 22254745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust control of a cable-driven rehabilitation robot for lower and upper limbs.
    Seyfi NS; Keymasi Khalaji A
    ISA Trans; 2022 Jun; 125():268-289. PubMed ID: 34294462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A robotic apparatus that dictates torque fields around joints without affecting inherent joint dynamics.
    Oytam Y; Lloyd D; Reid CS; de Rugy A; Carson RG
    Hum Mov Sci; 2010 Oct; 29(5):701-12. PubMed ID: 20728232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A structurally decoupled mechanism for measuring wrist torque in three degrees of freedom.
    Pan L; Yang Z; Zhang D
    Rev Sci Instrum; 2015 Oct; 86(10):104301. PubMed ID: 26520970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Research on assist-as-needed control strategy of wrist function-rehabilitation robot].
    Wang J; Zuo G; Zhang J; Shi C; Song T; Guo S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Feb; 37(1):129-135. PubMed ID: 32096386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a series elastic actuator for a compliant parallel wrist rehabilitation robot.
    Sergi F; Lee MM; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650481. PubMed ID: 24187298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel 4-DOF surgical instrument with modular joints and 6-Axis Force sensing capability.
    Li K; Pan B; Zhang F; Gao W; Fu Y; Wang S
    Int J Med Robot; 2017 Mar; 13(1):. PubMed ID: 27291158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of wrist and forearm rotations.
    Peaden AW; Charles SK
    J Biomech; 2014 Aug; 47(11):2779-85. PubMed ID: 24745814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.