BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 2613393)

  • 1. Influence of rifampicin, phenobarbital and cimetidine on mixed function monooxygenase in extensive and poor metabolizers of debrisoquine.
    Leclercq V; Desager JP; Horsmans Y; Van Nieuwenhuyze Y; Harvengt C
    Int J Clin Pharmacol Ther Toxicol; 1989 Dec; 27(12):593-8. PubMed ID: 2613393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of concomitant administration of cimetidine and phenobarbital on antipyrine elimination and metabolite formation.
    Sonne J; Døssing M; Poulsen HE; Pilsgaard H; Rasmussen B; Loft S
    Int J Clin Pharmacol Ther Toxicol; 1987 Apr; 25(4):194-6. PubMed ID: 3583468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of enzyme induction and inhibition on the oxidation of nifedipine, sparteine, mephenytoin and antipyrine in humans as assessed by a "cocktail" study design.
    Schellens JH; van der Wart JH; Brugman M; Breimer DD
    J Pharmacol Exp Ther; 1989 May; 249(2):638-45. PubMed ID: 2724144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of cimetidine on debrisoquine 4-hydroxylation in extensive metabolizers.
    Philip PA; James CA; Rogers HJ
    Eur J Clin Pharmacol; 1989; 36(3):319-21. PubMed ID: 2744073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the genetically controlled deficiency in debrisoquine hydroxylation on antipyrine metabolite formation.
    Danhof M; Idle JR; Teunissen MW; Sloan TP; Breimer DD; Smith RL
    Pharmacology; 1981; 22(6):349-58. PubMed ID: 7267701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of allylisopropylacetamide and phenobarbital treatment on in vivo antipyrine metabolite formation in rats.
    Teunissen MW; Van Graft M; Vermeulen NP; Breimer DD
    Xenobiotica; 1983 Aug; 13(8):497-502. PubMed ID: 6649682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of hexobarbital and antipyrine metabolism by rifampicin treatment in the pig.
    van den Broek JM; Teunissen MW; Breimer DD
    Drug Metab Dispos; 1981; 9(6):541-4. PubMed ID: 6120813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time course of phenobarbital and cimetidine mediated changes in hepatic drug metabolism.
    Døssing M; Pilsgaard H; Rasmussen B; Poulsen HE
    Eur J Clin Pharmacol; 1983; 25(2):215-22. PubMed ID: 6628504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of enzyme induction on polymorphic sparteine oxidation.
    Eichelbaum M; Mineshita S; Ohnhaus EE; Zekorn C
    Br J Clin Pharmacol; 1986 Jul; 22(1):49-53. PubMed ID: 3741726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antipyrine metabolism in relation to polymorphic oxidations of sparteine and debrisoquine.
    Eichelbaum M; Bertilsson L; Säwe J
    Br J Clin Pharmacol; 1983 Mar; 15(3):317-21. PubMed ID: 6849767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of cimetidine on the pharmacodynamics, pharmacokinetics and biotransformation of a single oral dose of alpidem.
    Desager JP; Hulhoven R; Harvengt C; Bianchetti G
    Int J Clin Pharmacol Ther Toxicol; 1990 Dec; 28(12):498-503. PubMed ID: 1982281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of cigarette smoke on antipyrine metabolite formation in rats.
    Nakagawa A; Chiba K; Ishizaki T; Nakamura K
    Res Commun Chem Pathol Pharmacol; 1983 Sep; 41(3):473-91. PubMed ID: 6635330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of diltiazem on hepatic drug metabolizing enzymes in man using antipyrine, trimethadione and debrisoquine as model substrates.
    Sakai H; Kobayashi S; Hamada K; Iida S; Akita H; Tanaka E; Uchida E; Yasuhara H
    Br J Clin Pharmacol; 1991 Mar; 31(3):353-5. PubMed ID: 2054276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of antipyrine and sulphadimidine in dwarf goats: effects of the enzyme-inducing agents phenobarbital, troleandomycin and rifampicin.
    Natsuhori M; Witkamp RF; Van 't Klooster GA; Van Miert AS
    Xenobiotica; 1992 Nov; 22(11):1243-50. PubMed ID: 1492417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interstrain comparison of hepatic and renal microsomal carcinogen metabolism and liver S9-mediated mutagenicity in DA and Lewis rats phenotyped as poor and extensive metabolizers of debrisoquine.
    Hietanen E; Malaveille C; Camus AM; Béréziat JC; Brun G; Castegnaro M; Michelon J; Idle JR; Bartsch H
    Drug Metab Dispos; 1986; 14(1):118-26. PubMed ID: 2868854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of debrisoquine phenotype and of quinidine on mexiletine disposition in man.
    Turgeon J; Fiset C; Giguère R; Gilbert M; Moerike K; Rouleau JR; Kroemer HK; Eichelbaum M; Grech-Bélanger O; Bélanger PM
    J Pharmacol Exp Ther; 1991 Nov; 259(2):789-98. PubMed ID: 1941626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Urinary excretion of 6 beta-hydroxycortisol and the time course measurement of enzyme induction in man.
    Ohnhaus EE; Breckenridge AM; Park BK
    Eur J Clin Pharmacol; 1989; 36(1):39-46. PubMed ID: 2917586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Isoniazid and rifampicin in the rabbit. Effect on hepatic microsomal enzyme activity].
    Kergueris MF; Larousse C; Le Normand Y; Guillerme G; Bourin M
    J Pharmacol; 1982; 13(4):525-34. PubMed ID: 7154665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased clearance of antipyrine and d-propranolol after phenobarbital treatment in the monkey. Relative contributions of enzyme induction and increased hepatic blood flow.
    Branch RA; Shand DG; Wilkinson GR; Nies AS
    J Clin Invest; 1974 Apr; 53(4):1101-7. PubMed ID: 4205524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consequences of rifampicin treatment on propafenone disposition in extensive and poor metabolizers of CYP2D6.
    Dilger K; Greiner B; Fromm MF; Hofmann U; Kroemer HK; Eichelbaum M
    Pharmacogenetics; 1999 Oct; 9(5):551-9. PubMed ID: 10591535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.