These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 26133998)

  • 1. Effect of fiber diameter on the assembly of functional 3D cardiac patches.
    Fleischer S; Miller J; Hurowitz H; Shapira A; Dvir T
    Nanotechnology; 2015 Jul; 26(29):291002. PubMed ID: 26133998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spring-like fibers for cardiac tissue engineering.
    Fleischer S; Feiner R; Shapira A; Ji J; Sui X; Daniel Wagner H; Dvir T
    Biomaterials; 2013 Nov; 34(34):8599-606. PubMed ID: 23953840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coiled fiber scaffolds embedded with gold nanoparticles improve the performance of engineered cardiac tissues.
    Fleischer S; Shevach M; Feiner R; Dvir T
    Nanoscale; 2014 Aug; 6(16):9410-4. PubMed ID: 24744098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Albumin fiber scaffolds for engineering functional cardiac tissues.
    Fleischer S; Shapira A; Regev O; Nseir N; Zussman E; Dvir T
    Biotechnol Bioeng; 2014 Jun; 111(6):1246-57. PubMed ID: 24420414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the conductivity and inner structure of electrospun fibers to promote cardiomyocyte elongation and synchronous beating.
    Liu Y; Lu J; Xu G; Wei J; Zhang Z; Li X
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():865-74. PubMed ID: 27612781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrohydrodynamic 3D printing of layer-specifically oriented, multiscale conductive scaffolds for cardiac tissue engineering.
    Lei Q; He J; Li D
    Nanoscale; 2019 Aug; 11(32):15195-15205. PubMed ID: 31380883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro.
    Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB
    Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polycaprolactone/oligomer compound scaffolds for cardiac tissue engineering.
    Reddy CS; Venugopal JR; Ramakrishna S; Zussman E
    J Biomed Mater Res A; 2014 Oct; 102(10):3713-25. PubMed ID: 24288184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering.
    Şenel Ayaz HG; Perets A; Ayaz H; Gilroy KD; Govindaraj M; Brookstein D; Lelkes PI
    Biomaterials; 2014 Oct; 35(30):8540-52. PubMed ID: 25017096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acellular cardiac extracellular matrix as a scaffold for tissue engineering: in vitro cell support, remodeling, and biocompatibility.
    Eitan Y; Sarig U; Dahan N; Machluf M
    Tissue Eng Part C Methods; 2010 Aug; 16(4):671-83. PubMed ID: 19780649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun nanofibrous scaffolds for engineering soft connective tissues.
    James R; Toti US; Laurencin CT; Kumbar SG
    Methods Mol Biol; 2011; 726():243-58. PubMed ID: 21424454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing the biofabrication process of omentum-based scaffolds for engineering autologous tissues.
    Soffer-Tsur N; Shevach M; Shapira A; Peer D; Dvir T
    Biofabrication; 2014 Sep; 6(3):035023. PubMed ID: 25162210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-dependent functional crosstalk between cardiac fibroblasts and cardiomyocytes in a 3D engineered cardiac tissue.
    Li Y; Asfour H; Bursac N
    Acta Biomater; 2017 Jun; 55():120-130. PubMed ID: 28455218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of bioactive 3D hybrid fibrous scaffolds on mechanical behavior and spatiotemporal osteoblast gene expression.
    Allo BA; Lin S; Mequanint K; Rizkalla AS
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7574-83. PubMed ID: 23826710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density.
    Soliman S; Sant S; Nichol JW; Khabiry M; Traversa E; Khademhosseini A
    J Biomed Mater Res A; 2011 Mar; 96(3):566-74. PubMed ID: 21254388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mussel-inspired 3D fiber scaffolds for heart-on-a-chip toxicity studies of engineered nanomaterials.
    Ahn S; Ardoña HAM; Lind JU; Eweje F; Kim SL; Gonzalez GM; Liu Q; Zimmerman JF; Pyrgiotakis G; Zhang Z; Beltran-Huarac J; Carpinone P; Moudgil BM; Demokritou P; Parker KK
    Anal Bioanal Chem; 2018 Sep; 410(24):6141-6154. PubMed ID: 29744562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun scaffold topography affects endothelial cell proliferation, metabolic activity, and morphology.
    Heath DE; Lannutti JJ; Cooper SL
    J Biomed Mater Res A; 2010 Sep; 94(4):1195-204. PubMed ID: 20694986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue.
    Radisic M; Park H; Martens TP; Salazar-Lazaro JE; Geng W; Wang Y; Langer R; Freed LE; Vunjak-Novakovic G
    J Biomed Mater Res A; 2008 Sep; 86(3):713-24. PubMed ID: 18041719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled heparin conjugation on electrospun poly(ε-caprolactone)/gelatin fibers for morphology-dependent protein delivery and enhanced cellular affinity.
    Lee J; Yoo JJ; Atala A; Lee SJ
    Acta Biomater; 2012 Jul; 8(7):2549-58. PubMed ID: 22465575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.