These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 26133998)

  • 21. Fiber diameter and texture of electrospun PEOT/PBT scaffolds influence human mesenchymal stem cell proliferation and morphology, and the release of incorporated compounds.
    Moroni L; Licht R; de Boer J; de Wijn JR; van Blitterswijk CA
    Biomaterials; 2006 Oct; 27(28):4911-22. PubMed ID: 16762409
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of chitosan-coated fibers as a scaffold for three-dimensional cultures of rabbit fibroblasts for ligament tissue engineering.
    Sarukawa J; Takahashi M; Abe M; Suzuki D; Tokura S; Furuike T; Tamura H
    J Biomater Sci Polym Ed; 2011; 22(4-6):717-32. PubMed ID: 20566054
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional analysis of the engineered cardiac tissue grown on recombinant spidroin fiber meshes.
    Teplenin A; Krasheninnikova A; Agladze N; Sidoruk K; Agapova O; Agapov I; Bogush V; Agladze K
    PLoS One; 2015; 10(3):e0121155. PubMed ID: 25799394
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biologically improved nanofibrous scaffolds for cardiac tissue engineering.
    Bhaarathy V; Venugopal J; Gandhimathi C; Ponpandian N; Mangalaraj D; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():268-77. PubMed ID: 25280706
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design and fabrication of heart muscle using scaffold-based tissue engineering.
    Blan NR; Birla RK
    J Biomed Mater Res A; 2008 Jul; 86(1):195-208. PubMed ID: 17972281
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bilayered scaffold for engineering cellularized blood vessels.
    Ju YM; Choi JS; Atala A; Yoo JJ; Lee SJ
    Biomaterials; 2010 May; 31(15):4313-21. PubMed ID: 20188414
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Collagen membrane as scaffold for the three-dimensional cultivation of cardiac cells in vitro].
    Liu XM; Liu H; Xiong FY; Chen ZL
    Sheng Wu Gong Cheng Xue Bao; 2003 Jul; 19(4):484-8. PubMed ID: 15969070
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds.
    Vatankhah E; Semnani D; Prabhakaran MP; Tadayon M; Razavi S; Ramakrishna S
    Acta Biomater; 2014 Feb; 10(2):709-21. PubMed ID: 24075888
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fiber alignment and coculture with fibroblasts improves the differentiated phenotype of murine embryonic stem cell-derived cardiomyocytes for cardiac tissue engineering.
    Parrag IC; Zandstra PW; Woodhouse KA
    Biotechnol Bioeng; 2012 Mar; 109(3):813-22. PubMed ID: 22006660
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Micro and nano-scale in vitro 3D culture system for cardiac stem cells.
    Hosseinkhani H; Hosseinkhani M; Hattori S; Matsuoka R; Kawaguchi N
    J Biomed Mater Res A; 2010 Jul; 94(1):1-8. PubMed ID: 20014298
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced chemoresistance of squamous carcinoma cells grown in 3D cryogenic electrospun scaffolds.
    Bulysheva AA; Bowlin GL; Petrova SP; Yeudall WA
    Biomed Mater; 2013 Oct; 8(5):055009. PubMed ID: 24057893
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds.
    Dar A; Shachar M; Leor J; Cohen S
    Biotechnol Bioeng; 2002 Nov; 80(3):305-12. PubMed ID: 12226863
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multifunctional degradable electronic scaffolds for cardiac tissue engineering.
    Feiner R; Fleischer S; Shapira A; Kalish O; Dvir T
    J Control Release; 2018 Jul; 281():189-195. PubMed ID: 29782947
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Xylan polysaccharides fabricated into nanofibrous substrate for myocardial infarction.
    Venugopal J; Rajeswari R; Shayanti M; Sridhar R; Sundarrajan S; Balamurugan R; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1325-31. PubMed ID: 23827578
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrospun biocomposite nanofibrous patch for cardiac tissue engineering.
    Prabhakaran MP; Kai D; Ghasemi-Mobarakeh L; Ramakrishna S
    Biomed Mater; 2011 Oct; 6(5):055001. PubMed ID: 21813957
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of PLGA/MWNTs composite electrospun fibrous scaffolds for improved myogenic differentiation of C2C12 cells.
    Xu J; Xie Y; Zhang H; Ye Z; Zhang W
    Colloids Surf B Biointerfaces; 2014 Nov; 123():907-15. PubMed ID: 25466454
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel 3D electrospun scaffolds with fibers oriented randomly and evenly in three dimensions to closely mimic the unique architectures of extracellular matrices in soft tissues: fabrication and mechanism study.
    Cai S; Xu H; Jiang Q; Yang Y
    Langmuir; 2013 Feb; 29(7):2311-8. PubMed ID: 23390966
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering.
    LaNasa SM; Bryant SJ
    Acta Biomater; 2009 Oct; 5(8):2929-38. PubMed ID: 19457460
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of fiber diameter and alignment of electrospun polyurethane meshes on mesenchymal progenitor cells.
    Bashur CA; Shaffer RD; Dahlgren LA; Guelcher SA; Goldstein AS
    Tissue Eng Part A; 2009 Sep; 15(9):2435-45. PubMed ID: 19292650
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Suspended micro/nanofiber hierarchical biological scaffolds fabricated using non-electrospinning STEP technique.
    Wang J; Nain AS
    Langmuir; 2014 Nov; 30(45):13641-9. PubMed ID: 25310055
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.