These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 26133998)
41. Distinct cell-to-fiber junctions are critical for the establishment of cardiotypical phenotype in a 3D bioartificial environment. Kofidis T; Balsam L; de Bruin J; Robbins RC Med Eng Phys; 2004 Mar; 26(2):157-63. PubMed ID: 15036183 [TBL] [Abstract][Full Text] [Related]
42. Cell adhesion and mechanical properties of a flexible scaffold for cardiac tissue engineering. Hidalgo-Bastida LA; Barry JJ; Everitt NM; Rose FR; Buttery LD; Hall IP; Claycomb WC; Shakesheff KM Acta Biomater; 2007 Jul; 3(4):457-62. PubMed ID: 17321810 [TBL] [Abstract][Full Text] [Related]
43. Design of biphasic polymeric 3-dimensional fiber deposited scaffolds for cartilage tissue engineering applications. Moroni L; Hendriks JA; Schotel R; de Wijn JR; van Blitterswijk CA Tissue Eng; 2007 Feb; 13(2):361-71. PubMed ID: 17504063 [TBL] [Abstract][Full Text] [Related]
44. Electrospun nanofibers as a tool for architecture control in engineered cardiac tissue. Orlova Y; Magome N; Liu L; Chen Y; Agladze K Biomaterials; 2011 Aug; 32(24):5615-24. PubMed ID: 21600646 [TBL] [Abstract][Full Text] [Related]
45. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering. Arafat MT; Lam CX; Ekaputra AK; Wong SY; Li X; Gibson I Acta Biomater; 2011 Feb; 7(2):809-20. PubMed ID: 20849985 [TBL] [Abstract][Full Text] [Related]
46. Gradient fiber electrospinning of layered scaffolds using controlled transitions in fiber diameter. Grey CP; Newton ST; Bowlin GL; Haas TW; Simpson DG Biomaterials; 2013 Jul; 34(21):4993-5006. PubMed ID: 23602367 [TBL] [Abstract][Full Text] [Related]
47. Mechanical properties of electrospun bilayer fibrous membranes as potential scaffolds for tissue engineering. Pu J; Komvopoulos K Acta Biomater; 2014 Jun; 10(6):2718-26. PubMed ID: 24434536 [TBL] [Abstract][Full Text] [Related]
48. Fabrication and characterization of regenerated silk scaffolds reinforced with natural silk fibers for bone tissue engineering. Mobini S; Hoyer B; Solati-Hashjin M; Lode A; Nosoudi N; Samadikuchaksaraei A; Gelinsky M J Biomed Mater Res A; 2013 Aug; 101(8):2392-404. PubMed ID: 23436754 [TBL] [Abstract][Full Text] [Related]
49. Degradable amorphous scaffolds with enhanced mechanical properties and homogeneous cell distribution produced by a three-dimensional fiber deposition method. Sun Y; Finne-Wistrand A; Albertsson AC; Xing Z; Mustafa K; Hendrikson WJ; Grijpma DW; Moroni L J Biomed Mater Res A; 2012 Oct; 100(10):2739-49. PubMed ID: 22623412 [TBL] [Abstract][Full Text] [Related]
50. Electrospun meshes possessing region-wise differences in fiber orientation, diameter, chemistry and mechanical properties for engineering bone-ligament-bone tissues. Samavedi S; Vaidya P; Gaddam P; Whittington AR; Goldstein AS Biotechnol Bioeng; 2014 Dec; 111(12):2549-59. PubMed ID: 24898875 [TBL] [Abstract][Full Text] [Related]
51. Cardiomyocyte dedifferentiation and remodeling in 3D scaffolds to generate the cellular diversity of engineering cardiac tissues. Wang C; Liu W; Shen Y; Chen J; Zhu H; Yang X; Jiang X; Wang Y; Zhou J Biomater Sci; 2019 Nov; 7(11):4636-4650. PubMed ID: 31455969 [TBL] [Abstract][Full Text] [Related]
52. Corrugated round fibers to improve cell adhesion and proliferation in tissue engineering scaffolds. Bettahalli NM; Arkesteijn IT; Wessling M; Poot AA; Stamatialis D Acta Biomater; 2013 Jun; 9(6):6928-35. PubMed ID: 23485858 [TBL] [Abstract][Full Text] [Related]
53. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering. Lee SH; Kim BS; Kim SH; Choi SW; Jeong SI; Kwon IK; Kang SW; Nikolovski J; Mooney DJ; Han YK; Kim YH J Biomed Mater Res A; 2003 Jul; 66(1):29-37. PubMed ID: 12833428 [TBL] [Abstract][Full Text] [Related]
54. Nanoengineering gold particle composite fibers for cardiac tissue engineering. Shevach M; Maoz BM; Feiner R; Shapira A; Dvir T J Mater Chem B; 2013 Oct; 1(39):5210-5217. PubMed ID: 32263327 [TBL] [Abstract][Full Text] [Related]
55. The effect of engineered nanotopography of electrospun microfibers on fiber rigidity and macrophage cytokine production. Schaub NJ; D'Amato AR; Mason A; Corr DT; Harmon EY; Lennartz MR; Gilbert RJ J Biomater Sci Polym Ed; 2017 Sep; 28(13):1303-1323. PubMed ID: 28420296 [TBL] [Abstract][Full Text] [Related]
56. Cardiomyocyte coculture on layered fibrous scaffolds assembled from micropatterned electrospun mats. Liu Y; Xu G; Wei J; Wu Q; Li X Mater Sci Eng C Mater Biol Appl; 2017 Dec; 81():500-510. PubMed ID: 28888004 [TBL] [Abstract][Full Text] [Related]
57. A three-dimensional hybrid pacemaker electrode seamlessly integrates into engineered, functional human cardiac tissue in vitro. Weigel T; Schmitz T; Pfister T; Gaetzner S; Jannasch M; Al-Hijailan R; Schürlein S; Suliman S; Mustafa K; Hansmann J Sci Rep; 2018 Sep; 8(1):14545. PubMed ID: 30266922 [TBL] [Abstract][Full Text] [Related]
58. Self-assembly of polydimethylsiloxane structures from 2D to 3D for bio-hybrid actuation. Vannozzi L; Ricotti L; Cianchetti M; Bearzi C; Gargioli C; Rizzi R; Dario P; Menciassi A Bioinspir Biomim; 2015 Aug; 10(5):056001. PubMed ID: 26292037 [TBL] [Abstract][Full Text] [Related]
59. Microstructured hybrid scaffolds for aligning neonatal rat ventricular myocytes. Sanzari I; Dinelli F; Humphrey E; Terracciano C; Prodromakis T Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109783. PubMed ID: 31349468 [TBL] [Abstract][Full Text] [Related]
60. Engineered cardiac micromodules for the in vitro fabrication of 3D endogenous macro-tissues. Totaro A; Urciuolo F; Imparato G; Netti PA Biofabrication; 2016 May; 8(2):025014. PubMed ID: 27213995 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]