These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26134509)

  • 1. Wavelength-selective absorptance in GaAs, InP and InAs nanowire arrays.
    Azizur-Rahman KM; LaPierre RR
    Nanotechnology; 2015 Jul; 26(29):295202. PubMed ID: 26134509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical design of a mid-wavelength infrared InSb nanowire photodetector.
    Azizur-Rahman KM; LaPierre RR
    Nanotechnology; 2016 Aug; 27(31):315202. PubMed ID: 27324593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of optical absorption in conical nanowires.
    Wilson DP; LaPierre RR
    Opt Express; 2021 Mar; 29(6):9544-9552. PubMed ID: 33820379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unique reflection from birefringent uncoated and gold-coated InP nanowire crystal arrays.
    Tu CW; Kaveh M; Fränzl M; Gao Q; Tan HH; Jagadish C; Schmitzer H; Wagner HP
    Opt Express; 2022 Jan; 30(3):3172-3182. PubMed ID: 35209584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-resolved photoluminescence characterization of GaAs nanowire arrays on native substrate.
    Dagytė V; Barrigón E; Zhang W; Zeng X; Heurlin M; Otnes G; Anttu N; Borgström MT
    Nanotechnology; 2017 Dec; 28(50):505706. PubMed ID: 29087959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of Nanowire Optical Modes Using Cross-Polarization Microscopy.
    Kakko JP; Matikainen A; Anttu N; Kujala S; Mäntynen H; Khayrudinov V; Autere A; Sun Z; Lipsanen H
    Sci Rep; 2017 Dec; 7(1):17790. PubMed ID: 29259279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable absorption resonances in the ultraviolet for InP nanowire arrays.
    Aghaeipour M; Anttu N; Nylund G; Samuelson L; Lehmann S; Pistol ME
    Opt Express; 2014 Nov; 22(23):29204-12. PubMed ID: 25402159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light absorption processes and optimization of ZnO/CdTe core-shell nanowire arrays for nanostructured solar cells.
    Michallon J; Bucci D; Morand A; Zanuccoli M; Consonni V; Kaminski-Cachopo A
    Nanotechnology; 2015 Feb; 26(7):075401. PubMed ID: 25629373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colorful InAs nanowire arrays: from strong to weak absorption with geometrical tuning.
    Wu PM; Anttu N; Xu HQ; Samuelson L; Pistol ME
    Nano Lett; 2012 Apr; 12(4):1990-5. PubMed ID: 22409436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. InP and InAs nanowires hetero- and homojunctions: energetic stability and electronic properties.
    Dionízio Moreira M; Venezuela P; Miwa RH
    Nanotechnology; 2010 Jul; 21(28):285204. PubMed ID: 20562482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical response of wurtzite and zinc blende GaP nanowire arrays.
    Aghaeipour M; Anttu N; Nylund G; Berg A; Lehmann S; Pistol ME
    Opt Express; 2015 Nov; 23(23):30177-87. PubMed ID: 26698498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical absorption of composition-tunable InGaAs nanowire arrays.
    Treu J; Xu X; Ott K; Saller K; Abstreiter G; Finley JJ; Koblmüller G
    Nanotechnology; 2019 Dec; 30(49):495703. PubMed ID: 31469097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light trapping in ZnO nanowire arrays covered with an absorbing shell for solar cells.
    Michallon J; Bucci D; Morand A; Zanuccoli M; Consonni V; Kaminski-Cachopo A
    Opt Express; 2014 Jun; 22 Suppl 4():A1174-89. PubMed ID: 24978080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation mechanism and optical properties of InAs quantum dots on the surface of GaAs nanowires.
    Yan X; Zhang X; Ren X; Lv X; Li J; Wang Q; Cai S; Huang Y
    Nano Lett; 2012 Apr; 12(4):1851-6. PubMed ID: 22439825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of light-matter interaction in single vertical nanowires in ordered nanowire arrays.
    Li Z; Li L; Wang F; Xu L; Gao Q; Alabadla A; Peng K; Vora K; Hattori HT; Tan HH; Jagadish C; Fu L
    Nanoscale; 2022 Mar; 14(9):3527-3536. PubMed ID: 35171176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Far-field emission patterns of nanowire light-emitting diodes.
    Motohisa J; Kohashi Y; Maeda S
    Nano Lett; 2014 Jun; 14(6):3653-60. PubMed ID: 24821257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. InAs quantum dot in a needlelike tapered InP nanowire: a telecom band single photon source monolithically grown on silicon.
    Jaffal A; Redjem W; Regreny P; Nguyen HS; Cueff S; Letartre X; Patriarche G; Rousseau E; Cassabois G; Gendry M; Chauvin N
    Nanoscale; 2019 Nov; 11(45):21847-21855. PubMed ID: 31696191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-controlled VLS growth of planar nanowires: yield and mechanism.
    Zhang C; Miao X; Mohseni PK; Choi W; Li X
    Nano Lett; 2014 Dec; 14(12):6836-41. PubMed ID: 25343224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabry-Perot description for Mie resonances of rectangular dielectric nanowire optical resonators.
    Landreman PE; Chalabi H; Park J; Brongersma ML
    Opt Express; 2016 Dec; 24(26):29760-29772. PubMed ID: 28059361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracting optical absorption characteristics from semiconductor nanowire arrays.
    Kohandani R; Saini SS
    Nanotechnology; 2022 Jul; 33(39):. PubMed ID: 35640495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.