These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26134509)

  • 41. Dual-band tunable narrowband near-infrared light trapping control based on a hybrid grating-based Fabry-Perot structure.
    Zhou K; Cheng Q; Lu L; Li B; Song J; Luo Z
    Opt Express; 2020 Jan; 28(2):1647-1656. PubMed ID: 32121872
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ultrafast electron and phonon response of oriented and diameter-controlled germanium nanowire arrays.
    Li Y; Clady R; Park J; Thombare SV; Schmidt TW; Brongersma ML; McIntyre PC
    Nano Lett; 2014 Jun; 14(6):3427-31. PubMed ID: 24797453
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced absorptance of the assembly structure incorporating germanium nanorods and two-dimensional silicon gratings for photovoltaics.
    Jia Z; Cheng Q; Song J; Zhou Y; Liu Y
    Appl Opt; 2016 Nov; 55(31):8821-8828. PubMed ID: 27828280
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fabrication and optical properties of GaAs/InGaAs/GaAs nanowire core-multishell quantum well heterostructures.
    Yan X; Zhang X; Li J; Wu Y; Cui J; Ren X
    Nanoscale; 2015 Jan; 7(3):1110-5. PubMed ID: 25482135
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Photo-acoustic spectroscopy revealing resonant absorption of self-assembled GaAs-based nanowires.
    Leahu G; Petronijevic E; Belardini A; Centini M; Li Voti R; Hakkarainen T; Koivusalo E; Guina M; Sibilia C
    Sci Rep; 2017 Jun; 7(1):2833. PubMed ID: 28588228
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Uncooled Photodetector at Short-Wavelength Infrared Using InAs Nanowire Photoabsorbers on InP with p- n Heterojunctions.
    Ren D; Meng X; Rong Z; Cao M; Farrell AC; Somasundaram S; Azizur-Rahman KM; Williams BS; Huffaker DL
    Nano Lett; 2018 Dec; 18(12):7901-7908. PubMed ID: 30444964
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications.
    Lin C; Povinelli ML
    Opt Express; 2009 Oct; 17(22):19371-81. PubMed ID: 19997158
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Single InAs nanowire room-temperature near-infrared photodetectors.
    Miao J; Hu W; Guo N; Lu Z; Zou X; Liao L; Shi S; Chen P; Fan Z; Ho JC; Li TX; Chen XS; Lu W
    ACS Nano; 2014 Apr; 8(4):3628-35. PubMed ID: 24592971
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Highly linear polarized emission at telecom bands in InAs/InP quantum dot-nanowires by geometry tailoring.
    Jaffal A; Regreny P; Patriarche G; Gendry M; Chauvin N
    Nanoscale; 2021 Oct; 13(40):16952-16958. PubMed ID: 34610634
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters.
    Liu CY; Li WS; Chu LW; Lu MY; Tsai CJ; Chen LJ
    Nanotechnology; 2011 Feb; 22(5):055603. PubMed ID: 21178255
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reconfigurable multi-channel WDM drop module using a tunable wavelength-selective photodetector array.
    Duan X; Huang Y; Ren X; Huang H; Xie S; Wang Q; Cai S
    Opt Express; 2010 Mar; 18(6):5879-89. PubMed ID: 20389605
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bundling of GaAs nanowires: a case of adhesion-induced self-assembly of nanowires.
    Carapezzi S; Priante G; Grillo V; Montès L; Rubini S; Cavallini A
    ACS Nano; 2014 Sep; 8(9):8932-41. PubMed ID: 25162379
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Near-infrared hybrid plasmonic multiple quantum well nanowire lasers.
    Wang J; Wei W; Yan X; Zhang J; Zhang X; Ren X
    Opt Express; 2017 Apr; 25(8):9358-9367. PubMed ID: 28437898
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Blueshift of electroluminescence from single n-InP nanowire/p-Si heterojunctions due to the Burstein-Moss effect.
    Liu C; Dai L; You LP; Xu WJ; Qin GG
    Nanotechnology; 2008 Nov; 19(46):465203. PubMed ID: 21836237
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Measuring and Modeling the Growth Dynamics of Self-Catalyzed GaP Nanowire Arrays.
    Oehler F; Cattoni A; Scaccabarozzi A; Patriarche G; Glas F; Harmand JC
    Nano Lett; 2018 Feb; 18(2):701-708. PubMed ID: 29257888
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Controlling the lasing modes in random lasers operating in the Anderson localization regime.
    Rashidi M; Li Z; Jagadish C; Mokkapati S; Tan HH
    Opt Express; 2021 Oct; 29(21):33548-33557. PubMed ID: 34809165
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spatially localized wavelength-selective absorption in morphology-modulated semiconductor nanowires.
    Choi JS; Kim KH; No YS
    Opt Express; 2017 Sep; 25(19):22750-22759. PubMed ID: 29041581
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimization of the design of extremely thin absorber solar cells based on electrodeposited ZnO nanowires.
    Lévy-Clément C; Elias J
    Chemphyschem; 2013 Jul; 14(10):2321-30. PubMed ID: 23744540
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sub-100 nm Si nanowire and nano-sheet array formation by MacEtch using a non-lithographic InAs nanowire mask.
    Shin JC; Zhang C; Li X
    Nanotechnology; 2012 Aug; 23(30):305305. PubMed ID: 22781145
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications.
    Du QG; Kam CH; Demir HV; Yu HY; Sun XW
    Opt Lett; 2011 May; 36(10):1884-6. PubMed ID: 21593923
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.