These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Ziegler A; Blatter XL; Seelig A; Seelig J Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253 [TBL] [Abstract][Full Text] [Related]
9. Binding of Nisin Z to bilayer vesicles as determined with isothermal titration calorimetry. Breukink E; Ganz P; de Kruijff B; Seelig J Biochemistry; 2000 Aug; 39(33):10247-54. PubMed ID: 10956014 [TBL] [Abstract][Full Text] [Related]
10. The efficacy of trivalent cyclic hexapeptides to induce lipid clustering in PG/PE membranes correlates with their antimicrobial activity. Finger S; Kerth A; Dathe M; Blume A Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2998-3006. PubMed ID: 26367060 [TBL] [Abstract][Full Text] [Related]
11. Length dependence of the coil <--> beta-sheet transition in a membrane environment. Meier M; Seelig J J Am Chem Soc; 2008 Jan; 130(3):1017-24. PubMed ID: 18163629 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamics of the coil <==> beta-sheet transition in a membrane environment. Meier M; Seelig J J Mol Biol; 2007 May; 369(1):277-89. PubMed ID: 17412361 [TBL] [Abstract][Full Text] [Related]
13. Thermodynamics of the alpha-helix-coil transition of amphipathic peptides in a membrane environment: implications for the peptide-membrane binding equilibrium. Wieprecht T; Apostolov O; Beyermann M; Seelig J J Mol Biol; 1999 Dec; 294(3):785-94. PubMed ID: 10610796 [TBL] [Abstract][Full Text] [Related]
14. On the interaction of ionic detergents with lipid membranes. Thermodynamic comparison of n-alkyl-+N(CH₃)₃ and n-alkyl-SO₄⁻. Beck A; Li-Blatter X; Seelig A; Seelig J J Phys Chem B; 2010 Dec; 114(48):15862-71. PubMed ID: 21067191 [TBL] [Abstract][Full Text] [Related]
15. Peripheral and integral membrane binding of peptides characterized by time-dependent fluorescence shifts: focus on antimicrobial peptide LAH₄. Macháň R; Jurkiewicz P; Olżyńska A; Olšinová M; Cebecauer M; Marquette A; Bechinger B; Hof M Langmuir; 2014 Jun; 30(21):6171-9. PubMed ID: 24807004 [TBL] [Abstract][Full Text] [Related]
16. Interaction of the neuronal marker dye FM1-43 with lipid membranes. Thermodynamics and lipid ordering. Schote U; Seelig J Biochim Biophys Acta; 1998 Dec; 1415(1):135-46. PubMed ID: 9858712 [TBL] [Abstract][Full Text] [Related]
17. Thermodynamics of the coil-alpha-helix transition of amphipathic peptides in a membrane environment: the role of vesicle curvature. Wieprecht T; Beyermann M; Seelig J Biophys Chem; 2002 May; 96(2-3):191-201. PubMed ID: 12034440 [TBL] [Abstract][Full Text] [Related]
18. Lipid interactions of LAH4, a peptide with antimicrobial and nucleic acid transfection activities. Perrone B; Miles AJ; Salnikov ES; Wallace BA; Bechinger B Eur Biophys J; 2014 Nov; 43(10-11):499-507. PubMed ID: 25182242 [TBL] [Abstract][Full Text] [Related]
19. Binding of peptides corresponding to the carboxy-terminal region of human-β-defensins-1-3 with model membranes investigated by isothermal titration calorimetry. Krishnakumari V; Nagaraj R Biochim Biophys Acta; 2012 May; 1818(5):1386-94. PubMed ID: 22386945 [TBL] [Abstract][Full Text] [Related]
20. Electrostatic and nonpolar peptide-membrane interactions. Lipid binding and functional properties of somatostatin analogues of charge z = +1 to z = +3. Seelig J; Nebel S; Ganz P; Bruns C Biochemistry; 1993 Sep; 32(37):9714-21. PubMed ID: 8104033 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]