These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 26134639)
1. NMDA Receptor Plasticity in the Hypothalamic Paraventricular Nucleus Contributes to the Elevated Blood Pressure Produced by Angiotensin II. Glass MJ; Wang G; Coleman CG; Chan J; Ogorodnik E; Van Kempen TA; Milner TA; Butler SD; Young CN; Davisson RL; Iadecola C; Pickel VM J Neurosci; 2015 Jul; 35(26):9558-67. PubMed ID: 26134639 [TBL] [Abstract][Full Text] [Related]
2. Redistribution of NMDA Receptors in Estrogen-Receptor-β-Containing Paraventricular Hypothalamic Neurons following Slow-Pressor Angiotensin II Hypertension in Female Mice with Accelerated Ovarian Failure. Marques-Lopes J; Tesfaye E; Israilov S; Van Kempen TA; Wang G; Glass MJ; Pickel VM; Iadecola C; Waters EM; Milner TA Neuroendocrinology; 2017; 104(3):239-256. PubMed ID: 27078860 [TBL] [Abstract][Full Text] [Related]
3. Sex differences in NMDA GluN1 plasticity in rostral ventrolateral medulla neurons containing corticotropin-releasing factor type 1 receptor following slow-pressor angiotensin II hypertension. Van Kempen TA; Dodos M; Woods C; Marques-Lopes J; Justice NJ; Iadecola C; Pickel VM; Glass MJ; Milner TA Neuroscience; 2015 Oct; 307():83-97. PubMed ID: 26306872 [TBL] [Abstract][Full Text] [Related]
4. Angiotensin II slow-pressor hypertension enhances NMDA currents and NOX2-dependent superoxide production in hypothalamic paraventricular neurons. Wang G; Coleman CG; Chan J; Faraco G; Marques-Lopes J; Milner TA; Guruju MR; Anrather J; Davisson RL; Iadecola C; Pickel VM Am J Physiol Regul Integr Comp Physiol; 2013 Jun; 304(12):R1096-106. PubMed ID: 23576605 [TBL] [Abstract][Full Text] [Related]
5. Slow-pressor angiotensin II hypertension and concomitant dendritic NMDA receptor trafficking in estrogen receptor β-containing neurons of the mouse hypothalamic paraventricular nucleus are sex and age dependent. Marques-Lopes J; Van Kempen T; Waters EM; Pickel VM; Iadecola C; Milner TA J Comp Neurol; 2014 Sep; 522(13):3075-90. PubMed ID: 24639345 [TBL] [Abstract][Full Text] [Related]
6. Chronic intermittent hypoxia induces NMDA receptor-dependent plasticity and suppresses nitric oxide signaling in the mouse hypothalamic paraventricular nucleus. Coleman CG; Wang G; Park L; Anrather J; Delagrammatikas GJ; Chan J; Zhou J; Iadecola C; Pickel VM J Neurosci; 2010 Sep; 30(36):12103-12. PubMed ID: 20826673 [TBL] [Abstract][Full Text] [Related]
7. α2δ-1 Is Essential for Sympathetic Output and NMDA Receptor Activity Potentiated by Angiotensin II in the Hypothalamus. Ma H; Chen SR; Chen H; Li L; Li DP; Zhou JJ; Pan HL J Neurosci; 2018 Jul; 38(28):6388-6398. PubMed ID: 29921713 [TBL] [Abstract][Full Text] [Related]
8. Tumor Necrosis Factor α Receptor Type 1 Activation in the Hypothalamic Paraventricular Nucleus Contributes to Glutamate Signaling and Angiotensin II-Dependent Hypertension. Woods C; Marques-Lopes J; Contoreggi NH; Milner TA; Pickel VM; Wang G; Glass MJ J Neurosci; 2021 Feb; 41(6):1349-1362. PubMed ID: 33303682 [TBL] [Abstract][Full Text] [Related]
9. Membrane trafficking of NADPH oxidase p47(phox) in paraventricular hypothalamic neurons parallels local free radical production in angiotensin II slow-pressor hypertension. Coleman CG; Wang G; Faraco G; Marques Lopes J; Waters EM; Milner TA; Iadecola C; Pickel VM J Neurosci; 2013 Mar; 33(10):4308-16. PubMed ID: 23467347 [TBL] [Abstract][Full Text] [Related]
10. Alteration of NMDA NR1 receptors within the paraventricular nucleus of hypothalamus in rats with heart failure. Li YF; Cornish KG; Patel KP Circ Res; 2003 Nov; 93(10):990-7. PubMed ID: 14576197 [TBL] [Abstract][Full Text] [Related]
11. Female protection from slow-pressor effects of angiotensin II involves prevention of ROS production independent of NMDA receptor trafficking in hypothalamic neurons expressing angiotensin 1A receptors. Marques-Lopes J; Lynch MK; Van Kempen TA; Waters EM; Wang G; Iadecola C; Pickel VM; Milner TA Synapse; 2015 Mar; 69(3):148-65. PubMed ID: 25559190 [TBL] [Abstract][Full Text] [Related]
12. Central Ang II (Angiotensin II)-Mediated Sympathoexcitation: Role for HIF-1α (Hypoxia-Inducible Factor-1α) Facilitated Glutamatergic Tone in the Paraventricular Nucleus of the Hypothalamus. Sharma NM; Haibara AS; Katsurada K; Nandi SS; Liu X; Zheng H; Patel KP Hypertension; 2021 Jan; 77(1):147-157. PubMed ID: 33296248 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin-angiotensin system and proinflammatory cytokines in hypertension. Su Q; Qin DN; Wang FX; Ren J; Li HB; Zhang M; Yang Q; Miao YW; Yu XJ; Qi J; Zhu Z; Zhu GQ; Kang YM Toxicol Appl Pharmacol; 2014 Apr; 276(2):115-20. PubMed ID: 24576725 [TBL] [Abstract][Full Text] [Related]
14. Adenoviral inhibition of AT1a receptors in the paraventricular nucleus inhibits acute increases in mean arterial blood pressure in the rat. Northcott CA; Watts S; Chen Y; Morris M; Chen A; Haywood JR Am J Physiol Regul Integr Comp Physiol; 2010 Nov; 299(5):R1202-11. PubMed ID: 20702798 [TBL] [Abstract][Full Text] [Related]
15. Central mineralocorticoid receptors and the role of angiotensin II and glutamate in the paraventricular nucleus of rats with angiotensin II-induced hypertension. Gabor A; Leenen FH Hypertension; 2013 May; 61(5):1083-90. PubMed ID: 23509081 [TBL] [Abstract][Full Text] [Related]
16. Cross talk between AT1 receptors and Toll-like receptor 4 in microglia contributes to angiotensin II-derived ROS production in the hypothalamic paraventricular nucleus. Biancardi VC; Stranahan AM; Krause EG; de Kloet AD; Stern JE Am J Physiol Heart Circ Physiol; 2016 Feb; 310(3):H404-15. PubMed ID: 26637556 [TBL] [Abstract][Full Text] [Related]
17. NAD(P)H oxidase in paraventricular nucleus contributes to the effect of angiotensin II on cardiac sympathetic afferent reflex. Zhang Y; Yu Y; Zhang F; Zhong MK; Shi Z; Gao XY; Wang W; Zhu GQ Brain Res; 2006 Apr; 1082(1):132-41. PubMed ID: 16519880 [TBL] [Abstract][Full Text] [Related]
18. Hypoxia-Inducible Factor-1α Mediates Increased Sympathoexcitation via Glutamatergic N-Methyl-d-Aspartate Receptors in the Paraventricular Nucleus of Rats With Chronic Heart Failure. Sharma NM; Cunningham CJ; Zheng H; Liu X; Patel KP Circ Heart Fail; 2016 Nov; 9(11):. PubMed ID: 27810863 [TBL] [Abstract][Full Text] [Related]
19. Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines. Kang YM; Zhang DM; Yu XJ; Yang Q; Qi J; Su Q; Suo YP; Yue LY; Zhu GQ; Qin DN Toxicol Appl Pharmacol; 2014 Feb; 274(3):436-44. PubMed ID: 24342267 [TBL] [Abstract][Full Text] [Related]
20. Angiotensin II attenuates NMDA receptor-mediated neuronal cell death and prevents the associated reduction in Bcl-2 expression. Schelman WR; Andres R; Ferguson P; Orr B; Kang E; Weyhenmeyer JA Brain Res Mol Brain Res; 2004 Sep; 128(1):20-9. PubMed ID: 15337314 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]