BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26134713)

  • 1. A technique for correction of attenuations in synchronous fluorescence spectroscopy.
    Devi S; Ghosh N; Pradhan A
    J Photochem Photobiol B; 2015 Oct; 151():1-9. PubMed ID: 26134713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Fluorescence spectral characteristics of human blood and its endogenous fluorophores].
    Li BH; Zhang ZX; Xie SS; Chen R
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Jul; 26(7):1310-3. PubMed ID: 17020047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting cervical cancer progression through extracted intrinsic fluorescence and principal component analysis.
    Devi S; Panigrahi PK; Pradhan A
    J Biomed Opt; 2014 Dec; 19(12):127003. PubMed ID: 25504494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated detection of intrinsic fluorophores in live microbial cells using an array of thin film amorphous silicon photodetectors.
    Jóskowiak A; Stasio N; Chu V; Prazeres DM; Conde JP
    Biosens Bioelectron; 2012; 36(1):242-9. PubMed ID: 22565094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo native fluorescence spectroscopy and nicotinamide adinine dinucleotide/flavin adenine dinucleotide reduction and oxidation states of oral submucous fibrosis for chemopreventive drug monitoring.
    Sivabalan S; Vedeswari CP; Jayachandran S; Koteeswaran D; Pravda C; Aruna PR; Ganesan S
    J Biomed Opt; 2010; 15(1):017010. PubMed ID: 20210484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Intralipid-10% in fluorescence distortion studies on liquid-tissue phantoms in UV range.
    Suresh Anand BS; Sujatha N
    J Biophotonics; 2011 Jan; 4(1-2):92-7. PubMed ID: 20414902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors.
    Zheng W; Lau W; Cheng C; Soo KC; Olivo M
    Int J Cancer; 2003 Apr; 104(4):477-81. PubMed ID: 12584746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of methods to determine chromophore concentrations from fluorescence spectra of turbid samples.
    Durkin AJ; Richards-Kortum R
    Lasers Surg Med; 1996; 19(1):75-89. PubMed ID: 8836998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation coefficient mapping in fluorescence spectroscopy: tissue classification for cancer detection.
    Crowell E; Wang G; Cox J; Platz CP; Geng L
    Anal Chem; 2005 Mar; 77(5):1368-75. PubMed ID: 15732920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative fluorescence spectroscopy in turbid media using fluorescence differential path length spectroscopy.
    Amelink A; Kruijt B; Robinson DJ; Sterenborg HJ
    J Biomed Opt; 2008; 13(5):054051. PubMed ID: 19021431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications.
    Drezek R; Sokolov K; Utzinger U; Boiko I; Malpica A; Follen M; Richards-Kortum R
    J Biomed Opt; 2001 Oct; 6(4):385-96. PubMed ID: 11728196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stokes shift spectroscopy pilot study for cancerous and normal prostate tissues.
    Ebenezar J; Pu Y; Wang WB; Liu CH; Alfano RR
    Appl Opt; 2012 Jun; 51(16):3642-9. PubMed ID: 22695604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and theoretical investigation of fluorescence photobleaching and recovery in human breast tissue and tissue phantoms.
    Gupta S; Bhawna ; Goswami P; Agarwal A; Pradhan A
    Appl Opt; 2004 Feb; 43(5):1044-52. PubMed ID: 15008483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental validation of an inverse fluorescence Monte Carlo model to extract concentrations of metabolically relevant fluorophores from turbid phantoms and a murine tumor model.
    Liu C; Rajaram N; Vishwanath K; Jiang T; Palmer GM; Ramanujam N
    J Biomed Opt; 2012 Jul; 17(7):077012. PubMed ID: 22894524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concentration of FAD as a marker for cervical precancer detection.
    Meena BL; Agarwal A; Pantola C; Pandey K; Pradhan A
    J Biomed Opt; 2019 Mar; 24(3):1-7. PubMed ID: 30903655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, fabrication and testing of 3D printed smartphone-based device for collection of intrinsic fluorescence from human cervix.
    Shukla S; Sah AN; Hatiboruah D; Ahirwar S; Nath P; Pradhan A
    Sci Rep; 2022 Jul; 12(1):11192. PubMed ID: 35778460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-Free Fluorescence Spectroscopy for Detecting Key Biomolecules in Brain Tissue from a Mouse Model of Alzheimer's Disease.
    Shi L; Lu L; Harvey G; Harvey T; Rodríguez-Contreras A; Alfano RR
    Sci Rep; 2017 Jun; 7(1):2599. PubMed ID: 28572632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic fluorescence changes associated with apoptosis of human epithelial keratinocytes.
    Georgakoudi I; Levitt J; Baldwin A; Papadakis A; Münger K
    Gynecol Oncol; 2005 Dec; 99(3 Suppl 1):S54-7. PubMed ID: 16419185
    [No Abstract]   [Full Text] [Related]  

  • 19. An improved multichannel high-speed spectrophotometer for fluorescence spectroscopy applications.
    Parsons B; Kent R; Cooper G
    Biomed Sci Technol; 1992; 1(3):74-83. PubMed ID: 10147526
    [No Abstract]   [Full Text] [Related]  

  • 20. Autofluorescence excitation-emission matrices for diagnosis of colonic cancer.
    Li BH; Xie SS
    World J Gastroenterol; 2005 Jul; 11(25):3931-4. PubMed ID: 15991296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.