These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 26134862)

  • 41. Zebrafish cellular nucleic acid-binding protein: gene structure and developmental behaviour.
    Armas P; Cachero S; Lombardo VA; Weiner A; Allende ML; Calcaterra NB
    Gene; 2004 Aug; 337():151-61. PubMed ID: 15276211
    [TBL] [Abstract][Full Text] [Related]  

  • 42. X-linked retinitis pigmentosa: mutation spectrum of the RPGR and RP2 genes and correlation with visual function.
    Sharon D; Bruns GA; McGee TL; Sandberg MA; Berson EL; Dryja TP
    Invest Ophthalmol Vis Sci; 2000 Aug; 41(9):2712-21. PubMed ID: 10937588
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Maternal control of vertebrate dorsoventral axis formation and epiboly by the POU domain protein Spg/Pou2/Oct4.
    Reim G; Brand M
    Development; 2006 Jul; 133(14):2757-70. PubMed ID: 16775002
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Novel variants of RPGR in X-linked retinitis pigmentosa families and genotype-phenotype correlation.
    Parmeggiani F; Barbaro V; Migliorati A; Raffa P; Nespeca P; De Nadai K; Del Vecchio C; Palù G; Parolin C; Di Iorio E
    Eur J Ophthalmol; 2017 Mar; 27(2):240-248. PubMed ID: 27768226
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The role of the X-linked retinitis pigmentosa protein RP2 in vesicle traffic and cilia function.
    Schwarz N; Hardcastle AJ; Cheetham ME
    Adv Exp Med Biol; 2012; 723():527-32. PubMed ID: 22183373
    [No Abstract]   [Full Text] [Related]  

  • 46. Pegasus, the 'atypical' Ikaros family member, influences left-right asymmetry and regulates pitx2 expression.
    John LB; Trengove MC; Fraser FW; Yoong SH; Ward AC
    Dev Biol; 2013 May; 377(1):46-54. PubMed ID: 23499657
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assay and functional analysis of the ARL3 effector RP2 involved in X-linked retinitis pigmentosa.
    Evans RJ; Chapple JP; Grayson C; Hardcastle AJ; Cheetham ME
    Methods Enzymol; 2005; 404():468-80. PubMed ID: 16413292
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mutational screening of the RP2 and RPGR genes in Spanish families with X-linked retinitis pigmentosa.
    García-Hoyos M; Garcia-Sandoval B; Cantalapiedra D; Riveiro R; Lorda-Sánchez I; Trujillo-Tiebas MJ; Rodriguez de Alba M; Millan JM; Baiget M; Ramos C; Ayuso C
    Invest Ophthalmol Vis Sci; 2006 Sep; 47(9):3777-82. PubMed ID: 16936086
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Retinitis pigmentosa 2 pathogenic mutants degrade through BAG6/HUWE1 complex.
    Zhang J; Gao H; Jiang N; Jing M; Sun Z; Du C; Zhang J; Wang M; Li J; Gao F; Hu Y; Mu H; Cui X
    Exp Eye Res; 2022 Jul; 220():109110. PubMed ID: 35569519
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Next generation mothers: Maternal control of germline development in zebrafish.
    Dosch R
    Crit Rev Biochem Mol Biol; 2015; 50(1):54-68. PubMed ID: 25413788
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Novel non-sense mutation in RP2 (c.843_844insT/p.Arg282fs) is associated with a severe phenotype of retinitis pigmentosa without evidence of primary retinal pigment epithelium involvement.
    Horner F; Wawrzynski J; MacLaren RE
    BMJ Case Rep; 2019 May; 12(5):. PubMed ID: 31079036
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular phenotype of zebrafish ovarian follicle by serial analysis of gene expression and proteomic profiling, and comparison with the transcriptomes of other animals.
    Knoll-Gellida A; André M; Gattegno T; Forgue J; Admon A; Babin PJ
    BMC Genomics; 2006 Mar; 7():46. PubMed ID: 16526958
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Systemic splicing factor deficiency causes tissue-specific defects: a zebrafish model for retinitis pigmentosa.
    Linder B; Dill H; Hirmer A; Brocher J; Lee GP; Mathavan S; Bolz HJ; Winkler C; Laggerbauer B; Fischer U
    Hum Mol Genet; 2011 Jan; 20(2):368-77. PubMed ID: 21051334
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition.
    Aanes H; Winata CL; Lin CH; Chen JP; Srinivasan KG; Lee SG; Lim AY; Hajan HS; Collas P; Bourque G; Gong Z; Korzh V; Aleström P; Mathavan S
    Genome Res; 2011 Aug; 21(8):1328-38. PubMed ID: 21555364
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Vegetally localised Vrtn functions as a novel repressor to modulate
    Shao M; Wang M; Liu YY; Ge YW; Zhang YJ; Shi DL
    Development; 2017 Sep; 144(18):3361-3374. PubMed ID: 28928283
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Delineation of the plasma membrane targeting domain of the X-linked retinitis pigmentosa protein RP2.
    Chapple JP; Hardcastle AJ; Grayson C; Willison KR; Cheetham ME
    Invest Ophthalmol Vis Sci; 2002 Jun; 43(6):2015-20. PubMed ID: 12037013
    [TBL] [Abstract][Full Text] [Related]  

  • 57. MondoA regulates gene expression in cholesterol biosynthesis-associated pathways required for zebrafish epiboly.
    Weger M; Weger BD; Schink A; Takamiya M; Stegmaier J; Gobet C; Parisi A; Kobitski AY; Mertes J; Krone N; Strähle U; Nienhaus GU; Mikut R; Gachon F; Gut P; Dickmeis T
    Elife; 2020 Sep; 9():. PubMed ID: 32969791
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Translational control by maternal Nanog promotes oogenesis and early embryonic development.
    He M; Jiao S; Zhang R; Ye D; Wang H; Sun Y
    Development; 2022 Dec; 149(24):. PubMed ID: 36533583
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cytoplasmic polyadenylation-mediated translational control of maternal mRNAs directs maternal-to-zygotic transition.
    Winata CL; Łapiński M; Pryszcz L; Vaz C; Bin Ismail MH; Nama S; Hajan HS; Lee SGP; Korzh V; Sampath P; Tanavde V; Mathavan S
    Development; 2018 Jan; 145(1):. PubMed ID: 29229769
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Changes of gamma-tubulin expression and distribution in the zebrafish (Danio rerio) ovary, oocyte and embryo.
    Liu J; Lessman CA
    Gene Expr Patterns; 2008 Apr; 8(4):237-47. PubMed ID: 18243062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.