These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26134928)

  • 21. Spinel Cu-Mn-Cr Oxide Nanoparticle-Pigmented Solar Selective Coatings Maintaining >94% Efficiency at 750 °C.
    Xu C; Wang X; Liu J
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35839146
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Highly Stable and Sustainable Low-Temperature Selective Absorber: Structural and Ageing Characterisation.
    Farchado M; San Vicente G; Germán N; Maffiotte C; Morales Á
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629465
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low Solar Absorptance, High Emittance Performance Thermochromic VO
    Hendaoui A
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558274
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solar selective coatings based on nickel oxide obtained via spray pyrolysis.
    Voinea M; Ienei E; Bogatu C; Duta A
    J Nanosci Nanotechnol; 2009 Jul; 9(7):4279-84. PubMed ID: 19916443
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scalable wavelength-selective solar absorber based on refractory TiN nanostructures.
    Nishikawa K; Yatsugi K
    Nanotechnology; 2021 Apr; 32(15):155404. PubMed ID: 33254161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals.
    Yeng YX; Chou JB; Rinnerbauer V; Shen Y; Kim SG; Joannopoulos JD; Soljacic M; Celanović I
    Opt Express; 2014 Sep; 22(18):21711-8. PubMed ID: 25321547
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tunable wavelength selectivity of photonic metamaterials-based thermal devices.
    Tian Y; Ghanekar A; Liu X; Sheng J; Zheng Y
    J Photonics Energy; 2019 Jul; 9(3):. PubMed ID: 34084268
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Possible high absorptance and low emittance selective surface for high temperature solar thermal collectors.
    Zhang QC; Kelly JC; Mills DR
    Appl Opt; 1991 May; 30(13):1653-8. PubMed ID: 20700339
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High performance solar-selective absorbers using coated sub-wavelength gratings.
    Sergeant NP; Agrawal M; Peumans P
    Opt Express; 2010 Mar; 18(6):5525-40. PubMed ID: 20389569
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toward a High-Efficient Utilization of Solar Radiation by Quad-Band Solar Spectral Splitting.
    Cao F; Huang Y; Tang L; Sun T; Boriskina SV; Chen G; Ren Z
    Adv Mater; 2016 Dec; 28(48):10659-10663. PubMed ID: 27731531
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High efficiency of photon-to-heat conversion with a 6-layered metal/dielectric film structure in the 250-1200 nm wavelength region.
    Liu MH; Hu ET; Yao Y; Zang KY; He N; Li J; Zheng YX; Wang SY; Yoshie O; Lee Y; Wang CZ; Lynch DW; Chen LY
    Opt Express; 2014 Dec; 22 Suppl 7():A1843-52. PubMed ID: 25607498
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Realization of Quasi-Omnidirectional Solar Cells with Superior Electrical Performance by All-Solution-Processed Si Nanopyramids.
    Zhong S; Wang W; Tan M; Zhuang Y; Shen W
    Adv Sci (Weinh); 2017 Nov; 4(11):1700200. PubMed ID: 29201616
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of optical absorptance of one-dimensionally periodic silicon gratings as solar absorbers for solar cells.
    Nguyen-Huu N; Cada M; Pištora J
    Opt Express; 2014 Jan; 22 Suppl 1():A68-79. PubMed ID: 24922001
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermal Stability of Chromium-Iron Oxidation Mixture Cermet-Based Solar Selective Absorbing Coatings.
    Yu H; Li J; Zhang Q; Pang W; Yan H; Li G
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32151026
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Feasible and Promising Strategy for Improving the Solar Selectivity and Thermal Stability of Cermet-Based Photothermal Conversion Coatings.
    Wang X; Kang Y; Yuan X; Gong D; Li K
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234192
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Superlattice photonic crystal as broadband solar absorber for high temperature operation.
    Rinnerbauer V; Shen Y; Joannopoulos JD; Soljačić M; Schäffler F; Celanovic I
    Opt Express; 2014 Dec; 22 Suppl 7():A1895-906. PubMed ID: 25607503
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Blackbody-cavity ideal absorbers for solar energy harvesting.
    Tian Y; Liu X; Ghanekar A; Chen F; Caratenuto A; Zheng Y
    Sci Rep; 2020 Nov; 10(1):20304. PubMed ID: 33219278
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hierarchical Graphene Foam for Efficient Omnidirectional Solar-Thermal Energy Conversion.
    Ren H; Tang M; Guan B; Wang K; Yang J; Wang F; Wang M; Shan J; Chen Z; Wei D; Peng H; Liu Z
    Adv Mater; 2017 Oct; 29(38):. PubMed ID: 28833544
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enabling high-temperature nanophotonics for energy applications.
    Yeng YX; Ghebrebrhan M; Bermel P; Chan WR; Joannopoulos JD; Soljačić M; Celanovic I
    Proc Natl Acad Sci U S A; 2012 Feb; 109(7):2280-5. PubMed ID: 22308448
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Colorful solar selective absorber integrated with different colored units.
    Chen F; Wang SW; Liu X; Ji R; Li Z; Chen X; Chen Y; Lu W
    Opt Express; 2016 Jan; 24(2):A92-103. PubMed ID: 26832602
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.