These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 26134974)

  • 1. Systematic characterization of the peroxidase gene family provides new insights into fungal pathogenicity in Magnaporthe oryzae.
    Mir AA; Park SY; Abu Sadat M; Kim S; Choi J; Jeon J; Lee YH
    Sci Rep; 2015 Jul; 5():11831. PubMed ID: 26134974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiprotein-bridging factor 1 regulates vegetative growth, osmotic stress, and virulence in Magnaporthe oryzae.
    Fan G; Zhang K; Huang H; Zhang H; Zhao A; Chen L; Chen R; Li G; Wang Z; Lu GD
    Curr Genet; 2017 May; 63(2):293-309. PubMed ID: 27485943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing roles for the glutathione reductase, thioredoxin reductase and thioredoxin peroxidase-encoding genes of Magnaporthe oryzae during rice blast disease.
    Fernandez J; Wilson RA
    PLoS One; 2014; 9(1):e87300. PubMed ID: 24475267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption and molecular characterization of calpains-related (MoCAPN1, MoCAPN3 and MoCAPN4) genes in Magnaporthe oryzae.
    Khan IA; Wang Y; Li HJ; Lu JP; Liu XH; Lin FC
    Microbiol Res; 2014 Nov; 169(11):844-54. PubMed ID: 24813949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic characterization of the bZIP transcription factor gene family in the rice blast fungus, Magnaporthe oryzae.
    Kong S; Park SY; Lee YH
    Environ Microbiol; 2015 Apr; 17(4):1425-43. PubMed ID: 25314920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative functional analysis of the velvet gene family reveals unique roles in fungal development and pathogenicity in Magnaporthe oryzae.
    Kim HJ; Han JH; Kim KS; Lee YH
    Fungal Genet Biol; 2014 May; 66():33-43. PubMed ID: 24632440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rice blast fungus (Magnaporthe oryzae) infects Arabidopsis via a mechanism distinct from that required for the infection of rice.
    Park JY; Jin J; Lee YW; Kang S; Lee YH
    Plant Physiol; 2009 Jan; 149(1):474-86. PubMed ID: 18987215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MoGrr1, a novel F-box protein, is involved in conidiogenesis and cell wall integrity and is critical for the full virulence of Magnaporthe oryzae.
    Guo M; Gao F; Zhu X; Nie X; Pan Y; Gao Z
    Appl Microbiol Biotechnol; 2015 Oct; 99(19):8075-88. PubMed ID: 26227409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-Wide Analysis of Hypoxia-Responsive Genes in the Rice Blast Fungus, Magnaporthe oryzae.
    Choi J; Chung H; Lee GW; Koh SK; Chae SK; Lee YH
    PLoS One; 2015; 10(8):e0134939. PubMed ID: 26241858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ER retention receptor, MoERR1 is required for fungal development and pathogenicity in the rice blast fungus, Magnaporthe oryzae.
    Goh J; Jeon J; Lee YH
    Sci Rep; 2017 Apr; 7(1):1259. PubMed ID: 28455525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Cell Wall Degrading Enzymes in Pathogenesis of Magnaporthe oryzae.
    Quoc NB; Chau NNB
    Curr Protein Pept Sci; 2017; 18(10):1019-1034. PubMed ID: 27526928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. WISH, a novel CFEM GPCR is indispensable for surface sensing, asexual and pathogenic differentiation in rice blast fungus.
    Sabnam N; Roy Barman S
    Fungal Genet Biol; 2017 Aug; 105():37-51. PubMed ID: 28576657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Magnaporthe oryzae nitrooxidative stress response suppresses rice innate immunity during blast disease.
    Marroquin-Guzman M; Hartline D; Wright JD; Elowsky C; Bourret TJ; Wilson RA
    Nat Microbiol; 2017 Apr; 2():17054. PubMed ID: 28418377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orotate phosphoribosyl transferase MoPyr5 is involved in uridine 5'-phosphate synthesis and pathogenesis of Magnaporthe oryzae.
    Qi Z; Liu M; Dong Y; Yang J; Zhang H; Zheng X; Zhang Z
    Appl Microbiol Biotechnol; 2016 Apr; 100(8):3655-66. PubMed ID: 26810198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small RNA Functions Are Required for Growth and Development of Magnaporthe oryzae.
    Raman V; Simon SA; Demirci F; Nakano M; Meyers BC; Donofrio NM
    Mol Plant Microbe Interact; 2017 Jul; 30(7):517-530. PubMed ID: 28504560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel L-arabinose-responsive regulator discovered in the rice-blast fungus Pyricularia oryzae (Magnaporthe oryzae).
    Klaubauf S; Zhou M; Lebrun MH; de Vries RP; Battaglia E
    FEBS Lett; 2016 Feb; 590(4):550-8. PubMed ID: 26790567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mnh6, a nonhistone protein, is required for fungal development and pathogenicity of Magnaporthe grisea.
    Lu JP; Feng XX; Liu XH; Lu Q; Wang HK; Lin FC
    Fungal Genet Biol; 2007 Sep; 44(9):819-29. PubMed ID: 17644013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A self-balancing circuit centered on MoOsm1 kinase governs adaptive responses to host-derived ROS in
    Liu X; Zhou Q; Guo Z; Liu P; Shen L; Chai N; Qian B; Cai Y; Wang W; Yin Z; Zhang H; Zheng X; Zhang Z
    Elife; 2020 Dec; 9():. PubMed ID: 33275098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ER chaperone LHS1 is involved in asexual development and rice infection by the blast fungus Magnaporthe oryzae.
    Yi M; Chi MH; Khang CH; Park SY; Kang S; Valent B; Lee YH
    Plant Cell; 2009 Feb; 21(2):681-95. PubMed ID: 19252083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MoCRZ1, a gene encoding a calcineurin-responsive transcription factor, regulates fungal growth and pathogenicity of Magnaporthe oryzae.
    Choi J; Kim Y; Kim S; Park J; Lee YH
    Fungal Genet Biol; 2009 Mar; 46(3):243-54. PubMed ID: 19111943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.