These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 26135050)

  • 1. Nanopaper as an Optical Sensing Platform.
    Morales-Narváez E; Golmohammadi H; Naghdi T; Yousefi H; Kostiv U; Horák D; Pourreza N; Merkoçi A
    ACS Nano; 2015 Jul; 9(7):7296-305. PubMed ID: 26135050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chitin Nanofiber Paper toward Optical (Bio)sensing Applications.
    Naghdi T; Golmohammadi H; Yousefi H; Hosseinifard M; Kostiv U; Horák D; Merkoçi A
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15538-15552. PubMed ID: 32148018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lab-on-nanopaper: An optical sensing bioplatform based on curcumin embedded in bacterial nanocellulose as an albumin assay kit.
    Naghdi T; Golmohammadi H; Vosough M; Atashi M; Saeedi I; Maghsoudi MT
    Anal Chim Acta; 2019 Sep; 1070():104-111. PubMed ID: 31103163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silver nanoparticles-embedded nanopaper as a colorimetric chiral sensing platform.
    Zor E
    Talanta; 2018 Jul; 184():149-155. PubMed ID: 29674026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanopaper-based screen-printed electrodes: a hybrid sensing bioplatform for dual opto-electrochemical sensing applications.
    Eynaki H; Kiani MA; Golmohammadi H
    Nanoscale; 2020 Sep; 12(35):18409-18417. PubMed ID: 32941575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Easy Diagnosis of Jaundice: A Smartphone-Based Nanosensor Bioplatform Using Photoluminescent Bacterial Nanopaper for Point-of-Care Diagnosis of Hyperbilirubinemia.
    Tabatabaee RS; Golmohammadi H; Ahmadi SH
    ACS Sens; 2019 Apr; 4(4):1063-1071. PubMed ID: 30896150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green in-situ synthesized silver nanoparticles embedded in bacterial cellulose nanopaper as a bionanocomposite plasmonic sensor.
    Pourreza N; Golmohammadi H; Naghdi T; Yousefi H
    Biosens Bioelectron; 2015 Dec; 74():353-9. PubMed ID: 26159156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Luminescent and transparent nanopaper based on rare-earth up-converting nanoparticle grafted nanofibrillated cellulose derived from garlic skin.
    Zhao J; Wei Z; Feng X; Miao M; Sun L; Cao S; Shi L; Fang J
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):14945-51. PubMed ID: 25116651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Eco-Friendly Disposable Plasmonic Sensor Based on Bacterial Cellulose and Gold.
    Cennamo N; Trigona C; Graziani S; Zeni L; Arcadio F; Di Pasquale G; Pollicino A
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31717550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A nanopaper-based artificial tongue: a ratiometric fluorescent sensor array on bacterial nanocellulose for chemical discrimination applications.
    Abbasi-Moayed S; Golmohammadi H; Hormozi-Nezhad MR
    Nanoscale; 2018 Feb; 10(5):2492-2502. PubMed ID: 29340401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical Modification of Cellulose Nanofibers for the Production of Highly Thermal Resistant and Optically Transparent Nanopaper for Paper Devices.
    Yagyu H; Saito T; Isogai A; Koga H; Nogi M
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):22012-7. PubMed ID: 26402324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermally Conductive, Electrical Insulating, Optically Transparent Bi-Layer Nanopaper.
    Zhou L; Yang Z; Luo W; Han X; Jang SH; Dai J; Yang B; Hu L
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):28838-28843. PubMed ID: 27704759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible, highly transparent and iridescent all-cellulose hybrid nanopaper with enhanced mechanical strength and writable surface.
    Xiong R; Han Y; Wang Y; Zhang W; Zhang X; Lu C
    Carbohydr Polym; 2014 Nov; 113():264-71. PubMed ID: 25256484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of population density and size of silver nanoparticles embedded in bacterial cellulose via ammonia exposure: visual detection of volatile compounds in a piece of plasmonic nanopaper.
    Heli B; Morales-Narváez E; Golmohammadi H; Ajji A; Merkoçi A
    Nanoscale; 2016 Apr; 8(15):7984-91. PubMed ID: 27009781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward a nanopaper-based and solid phase immunoassay using FRET for the rapid detection of bacteria.
    Heli B; Ajji A
    Sci Rep; 2020 Sep; 10(1):14367. PubMed ID: 32873860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NanoPADs and nanoFACEs: an optically transparent nanopaper-based device for biomedical applications.
    Ying B; Park S; Chen L; Dong X; Young EWK; Liu X
    Lab Chip; 2020 Sep; 20(18):3322-3333. PubMed ID: 32766659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composite Sensor Particles for Tuned SERS Sensing: Microfluidic Synthesis, Properties and Applications.
    Visaveliya N; Lenke S; Köhler JM
    ACS Appl Mater Interfaces; 2015 May; 7(20):10742-54. PubMed ID: 25939496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly transparent and flexible nanopaper transistors.
    Huang J; Zhu H; Chen Y; Preston C; Rohrbach K; Cumings J; Hu L
    ACS Nano; 2013 Mar; 7(3):2106-13. PubMed ID: 23350951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous Cellulose Nanofiber-Based Microcapsules for Biomolecular Sensing.
    Paulraj T; Wennmalm S; Riazanova AV; Wu Q; Crespo GA; Svagan AJ
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41146-41154. PubMed ID: 30412378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.