These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Zinc deficiency in field-grown pecan trees: changes in leaf nutrient concentrations and structure. Ojeda-Barrios D; Abadía J; Lombardini L; Abadía A; Vázquez S J Sci Food Agric; 2012 Jun; 92(8):1672-8. PubMed ID: 22228397 [TBL] [Abstract][Full Text] [Related]
3. Impact of anatomical traits of maize (Zea mays L.) leaf as affected by nitrogen supply and leaf age on bundle sheath conductance. Retta M; Yin X; van der Putten PE; Cantre D; Berghuijs HN; Ho QT; Verboven P; Struik PC; Nicolaï BM Plant Sci; 2016 Nov; 252():205-214. PubMed ID: 27717455 [TBL] [Abstract][Full Text] [Related]
4. Transcriptomic and proteomic analyses reveal new insight into chlorophyll synthesis and chloroplast structure of maize leaves under zinc deficiency stress. Zhang J; Wang S; Song S; Xu F; Pan Y; Wang H J Proteomics; 2019 May; 199():123-134. PubMed ID: 30849524 [TBL] [Abstract][Full Text] [Related]
5. Effects of enhanced atmospheric ammonia on physiological characteristics of maize(Zea mays L.). Chen X; Li S J Sci Food Agric; 2013 Sep; 93(12):3094-9. PubMed ID: 23526362 [TBL] [Abstract][Full Text] [Related]
6. Zinc deficiency tolerance in maize is associated with the up-regulation of Zn transporter genes and antioxidant activities. Khatun MA; Hossain MM; Bari MA; Abdullahil KM; Parvez MS; Alam MF; Kabir AH Plant Biol (Stuttg); 2018 Jul; 20(4):765-770. PubMed ID: 29718561 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of zinc accumulation, allocation, and tolerance in Zea mays L. seedlings: implication for zinc phytoextraction. Bashmakov DI; Lukatkin AS; Anjum NA; Ahmad I; Pereira E Environ Sci Pollut Res Int; 2015 Oct; 22(20):15443-8. PubMed ID: 25987477 [TBL] [Abstract][Full Text] [Related]
8. Genotypic differences in zinc efficiency of Chinese maize evaluated in a pot experiment. Karim MR; Zhang YQ; Tian D; Chen FJ; Zhang FS; Zou CQ J Sci Food Agric; 2012 Sep; 92(12):2552-9. PubMed ID: 22450931 [TBL] [Abstract][Full Text] [Related]
9. [Effects of organic fertilizer application rate on leaf photosynthetic characteristics and grain yield of dryland maize]. Wang XJ; Jia ZK; Liang LY; Ding RX; Wang M; Li H Ying Yong Sheng Tai Xue Bao; 2012 Feb; 23(2):419-25. PubMed ID: 22586967 [TBL] [Abstract][Full Text] [Related]
10. Chilling-induced physiological, anatomical and biochemical responses in the leaves of Miscanthus × giganteus and maize (Zea mays L.). Bilska-Kos A; Panek P; Szulc-Głaz A; Ochodzki P; Cisło A; Zebrowski J J Plant Physiol; 2018 Sep; 228():178-188. PubMed ID: 29945073 [TBL] [Abstract][Full Text] [Related]
11. Mixed Compound of DCPTA and CCC Increases Maize Yield by Improving Plant Morphology and Up-Regulating Photosynthetic Capacity and Antioxidants. Wang Y; Gu W; Xie T; Li L; Sun Y; Zhang H; Li J; Wei S PLoS One; 2016; 11(2):e0149404. PubMed ID: 26872260 [TBL] [Abstract][Full Text] [Related]
12. Efficiency of a NPK fertilizer with adhered zinc lignosulfonate as a zinc source for maize (Zea mays L.). Martín-Ortiz D; Hernández-Apaolaza L; Gárate A J Agric Food Chem; 2009 Oct; 57(19):9071-8. PubMed ID: 19761209 [TBL] [Abstract][Full Text] [Related]
14. [Leaf redundancy of high-yielding maize (Zea may L.) and its effects on maize yield and photosynthesis]. Hao MB; Wang KJ; Dong ST; Zhang JW; Li DH; Liu P; Yang JS; Liu JG Ying Yong Sheng Tai Xue Bao; 2010 Feb; 21(2):344-50. PubMed ID: 20462004 [TBL] [Abstract][Full Text] [Related]
15. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment. Wang F; Liu X; Shi Z; Tong R; Adams CA; Shi X Chemosphere; 2016 Mar; 147():88-97. PubMed ID: 26761602 [TBL] [Abstract][Full Text] [Related]
16. [Effects of arbuscular mycorrhizal fungi on photosynthetic characteristics of maize under low temperature stress]. Zhu XC; Song FB; Xu HW Ying Yong Sheng Tai Xue Bao; 2010 Feb; 21(2):470-5. PubMed ID: 20462022 [TBL] [Abstract][Full Text] [Related]
17. Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum. Allen LH; Kakani VG; Vu JC; Boote KJ J Plant Physiol; 2011 Nov; 168(16):1909-18. PubMed ID: 21676489 [TBL] [Abstract][Full Text] [Related]
18. Exogenous DCPTA Ameliorates Simulated Drought Conditions by Improving the Growth and Photosynthetic Capacity of Maize Seedlings. Xie T; Gu W; Meng Y; Li J; Li L; Wang Y; Qu D; Wei S Sci Rep; 2017 Oct; 7(1):12684. PubMed ID: 28978944 [TBL] [Abstract][Full Text] [Related]
19. Effects of zinc addition to a copper-contaminated vineyard soil on sorption of Zn by soil and plant physiological responses. Tiecher TL; Ceretta CA; Tiecher T; Ferreira PA; Nicoloso FT; Soriani HH; Rossato LV; Mimmo T; Cesco S; Lourenzi CR; Giachini AJ; Brunetto G Ecotoxicol Environ Saf; 2016 Jul; 129():109-19. PubMed ID: 27011111 [TBL] [Abstract][Full Text] [Related]
20. Effects of zinc application on the growth and photosynthetic characteristics of pecan at the seedling stage. Liu JP; Deng QJ; Shang YJ; Yao XW; Wang HK; Tang YJ; Peng FR; Tan PP Plant Biol (Stuttg); 2021 Nov; 23(6):1149-1156. PubMed ID: 34396655 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]