These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1859 related articles for article (PubMed ID: 26135716)

  • 21. I
    Trompoukis G; Rigas P; Leontiadis LJ; Papatheodoropoulos C
    Mol Cell Neurosci; 2020 Sep; 107():103531. PubMed ID: 32711112
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Disrupting neural activity related to awake-state sharp wave-ripple complexes prevents hippocampal learning.
    Nokia MS; Mikkonen JE; Penttonen M; Wikgren J
    Front Behav Neurosci; 2012; 6():84. PubMed ID: 23316148
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A possible role of ectopic action potentials in the in vitro hippocampal sharp wave-ripple complexes.
    Papatheodoropoulos C
    Neuroscience; 2008 Dec; 157(3):495-501. PubMed ID: 18938226
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of the GABA(A) receptor antagonists bicuculline and gabazine on stimulus-induced sharp wave-ripple complexes in adult rat hippocampus in vitro.
    Behrens CJ; van den Boom LP; Heinemann U
    Eur J Neurosci; 2007 Apr; 25(7):2170-81. PubMed ID: 17419756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Partial disinhibition is required for transition of stimulus-induced sharp wave-ripple complexes into recurrent epileptiform discharges in rat hippocampal slices.
    Liotta A; Caliskan G; ul Haq R; Hollnagel JO; Rösler A; Heinemann U; Behrens CJ
    J Neurophysiol; 2011 Jan; 105(1):172-87. PubMed ID: 20881199
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adrenergic modulation of sharp wave-ripple activity in rat hippocampal slices.
    Ul Haq R; Liotta A; Kovacs R; Rösler A; Jarosch MJ; Heinemann U; Behrens CJ
    Hippocampus; 2012 Mar; 22(3):516-33. PubMed ID: 21254303
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A computational study of suppression of sharp wave ripple complexes by controlling calcium and gap junctions in pyramidal cells.
    Mushtaq M; Haq RU; Anwar W; Marshall L; Bazhenov M; Zia K; Alam H; Hertel L; Awan AA; Martinetz T
    Bioengineered; 2021 Dec; 12(1):2603-2615. PubMed ID: 34115572
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diversity of sharp-wave-ripple LFP signatures reveals differentiated brain-wide dynamical events.
    Ramirez-Villegas JF; Logothetis NK; Besserve M
    Proc Natl Acad Sci U S A; 2015 Nov; 112(46):E6379-87. PubMed ID: 26540729
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonspecific effects of the gap junction blocker mefloquine on fast hippocampal network oscillations in the adult rat in vitro.
    Behrens CJ; Ul Haq R; Liotta A; Anderson ML; Heinemann U
    Neuroscience; 2011 Sep; 192():11-9. PubMed ID: 21763755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Propagation of hippocampal ripples to the neocortex by way of a subiculum-retrosplenial pathway.
    Nitzan N; McKenzie S; Beed P; English DF; Oldani S; Tukker JJ; Buzsáki G; Schmitz D
    Nat Commun; 2020 Apr; 11(1):1947. PubMed ID: 32327634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A diversity of interneurons and Hebbian plasticity facilitate rapid compressible learning in the hippocampus.
    Nicola W; Clopath C
    Nat Neurosci; 2019 Jul; 22(7):1168-1181. PubMed ID: 31235906
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activity-dependent plasticity of mouse hippocampal assemblies in vitro.
    Keller MK; Draguhn A; Both M; Reichinnek S
    Front Neural Circuits; 2015; 9():21. PubMed ID: 26041998
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selective activation of deep layer (V-VI) retrohippocampal cortical neurons during hippocampal sharp waves in the behaving rat.
    Chrobak JJ; Buzsáki G
    J Neurosci; 1994 Oct; 14(10):6160-70. PubMed ID: 7931570
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lamina-specific contribution of glutamatergic and GABAergic potentials to hippocampal sharp wave-ripple complexes.
    Schönberger J; Draguhn A; Both M
    Front Neural Circuits; 2014; 8():103. PubMed ID: 25202239
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A developmental increase of inhibition promotes the emergence of hippocampal ripples.
    Pochinok I; Stöber TM; Triesch J; Chini M; Hanganu-Opatz IL
    Nat Commun; 2024 Jan; 15(1):738. PubMed ID: 38272901
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relationships between hippocampal sharp waves, ripples, and fast gamma oscillation: influence of dentate and entorhinal cortical activity.
    Sullivan D; Csicsvari J; Mizuseki K; Montgomery S; Diba K; Buzsáki G
    J Neurosci; 2011 Jun; 31(23):8605-16. PubMed ID: 21653864
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hippocampal ripples as a mode of communication with cortical and subcortical areas.
    Todorova R; Zugaro M
    Hippocampus; 2020 Jan; 30(1):39-49. PubMed ID: 30069976
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Circuit mechanisms of hippocampal reactivation during sleep.
    Malerba P; Bazhenov M
    Neurobiol Learn Mem; 2019 Apr; 160():98-107. PubMed ID: 29723670
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Brain temperature affects quantitative features of hippocampal sharp wave ripples.
    Petersen PC; Vöröslakos M; Buzsáki G
    J Neurophysiol; 2022 May; 127(5):1417-1425. PubMed ID: 35389772
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Age-associated changes in waking hippocampal sharp-wave ripples.
    Cowen SL; Gray DT; Wiegand JL; Schimanski LA; Barnes CA
    Hippocampus; 2020 Jan; 30(1):28-38. PubMed ID: 29981255
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 93.