These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 26135839)

  • 1. Bottom-up fabrication of graphene on Ru(0001) via molecular self-assembly.
    Cai Y; Zhang H; Song J; Zhang Y; Rehman AU; He P
    Nanotechnology; 2015 Jul; 26(29):295601. PubMed ID: 26135839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bottom-up fabrication of graphene nanostructures on Ru(1010).
    Song J; Zhang HJ; Cai Y; Zhang Y; Bao S; He P
    Nanotechnology; 2016 Feb; 27(5):055602. PubMed ID: 26671535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular self-assembly on graphene.
    MacLeod JM; Rosei F
    Small; 2014 Mar; 10(6):1038-49. PubMed ID: 24155272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From Graphene Nanoribbons on Cu(111) to Nanographene on Cu(110): Critical Role of Substrate Structure in the Bottom-Up Fabrication Strategy.
    Simonov KA; Vinogradov NA; Vinogradov AS; Generalov AV; Zagrebina EM; Svirskiy GI; Cafolla AA; Carpy T; Cunniffe JP; Taketsugu T; Lyalin A; Mårtensson N; Preobrajenski AB
    ACS Nano; 2015 Sep; 9(9):8997-9011. PubMed ID: 26301684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Out-of-Plane Alignment of Er(trensal) Easy Magnetization Axes Using Graphene.
    Dreiser J; Pacchioni GE; Donati F; Gragnaniello L; Cavallin A; Pedersen KS; Bendix J; Delley B; Pivetta M; Rusponi S; Brune H
    ACS Nano; 2016 Feb; 10(2):2887-92. PubMed ID: 26814851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling the spatial arrangement of organic magnetic anions adsorbed on epitaxial graphene on Ru(0001).
    Stradi D; Garnica M; Díaz C; Calleja F; Barja S; Martín N; Alcamí M; Vazquez de Parga AL; Miranda R; Martín F
    Nanoscale; 2014 Dec; 6(24):15271-9. PubMed ID: 25382549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Squeezing water clusters between graphene sheets: energetics, structure, and intermolecular interactions.
    McKenzie S; Kang HC
    Phys Chem Chem Phys; 2014 Dec; 16(47):26004-15. PubMed ID: 25356833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of copper (fluoro-)phthalocyanine layers deposited on epitaxial graphene.
    Ren J; Meng S; Wang YL; Ma XC; Xue QK; Kaxiras E
    J Chem Phys; 2011 May; 134(19):194706. PubMed ID: 21599081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Assembly Strategy for Fabricating Connected Graphene Nanoribbons.
    Han P; Akagi K; Federici Canova F; Shimizu R; Oguchi H; Shiraki S; Weiss PS; Asao N; Hitosugi T
    ACS Nano; 2015 Dec; 9(12):12035-44. PubMed ID: 26588477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical interactions and their influence upon the adsorption of organic molecules on a graphene film.
    Roos M; Künzel D; Uhl B; Huang HH; Brandao Alves O; Hoster HE; Gross A; Behm RJ
    J Am Chem Soc; 2011 Jun; 133(24):9208-11. PubMed ID: 21604801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity.
    Han P; Akagi K; Federici Canova F; Mutoh H; Shiraki S; Iwaya K; Weiss PS; Asao N; Hitosugi T
    ACS Nano; 2014 Sep; 8(9):9181-7. PubMed ID: 25162921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerium Oxide Nanoclusters on Graphene/Ru(0001): Intercalation of Oxygen via Spillover.
    Novotny Z; Netzer FP; Dohnálek Z
    ACS Nano; 2015 Aug; 9(8):8617-26. PubMed ID: 26230753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecules-oligomers-nanowires-graphene nanoribbons: a bottom-up stepwise on-surface covalent synthesis preserving long-range order.
    Basagni A; Sedona F; Pignedoli CA; Cattelan M; Nicolas L; Casarin M; Sambi M
    J Am Chem Soc; 2015 Feb; 137(5):1802-8. PubMed ID: 25582946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical adsorption and charge transfer of molecular Br2 on graphene.
    Chen Z; Darancet P; Wang L; Crowther AC; Gao Y; Dean CR; Taniguchi T; Watanabe K; Hone J; Marianetti CA; Brus LE
    ACS Nano; 2014 Mar; 8(3):2943-50. PubMed ID: 24528378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene substrate-mediated catalytic performance enhancement of Ru nanoparticles: a first-principles study.
    Liu X; Yao KX; Meng C; Han Y
    Dalton Trans; 2012 Jan; 41(4):1289-96. PubMed ID: 22134739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate-mediated enhanced activity of Ru nanoparticles in catalytic hydrogenation of benzene.
    Liu X; Meng C; Han Y
    Nanoscale; 2012 Apr; 4(7):2288-95. PubMed ID: 22392351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orientation-Dependent Interaction between CO2 Molecules Adsorbed on Ru(0001).
    Feng X; Cerdá JI; Salmeron M
    J Phys Chem Lett; 2015 May; 6(9):1780-4. PubMed ID: 26263349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First principles study of the graphene/Ru(0001) interface.
    Jiang DE; Du MH; Dai S
    J Chem Phys; 2009 Feb; 130(7):074705. PubMed ID: 19239307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theoretical study of H(2) dissociation on (sq.rt(3) x sq.rt(3))R30 degrees CO/Ru(0001).
    Groot IM; Juanes-Marcos JC; Olsen RA; Kroes GJ
    J Chem Phys; 2010 Apr; 132(14):144704. PubMed ID: 20406007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemistry and temperature-assisted dehydrogenation of C60H30 molecules on TiO2(110) surfaces.
    Sánchez-Sánchez C; Martínez JI; Lanzilotto V; Biddau G; Gómez-Lor B; Pérez R; Floreano L; López MF; Martín-Gago JÁ
    Nanoscale; 2013 Nov; 5(22):11058-65. PubMed ID: 24071968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.