These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 26135843)

  • 21. The GEF1 proton-chloride exchanger affects tombusvirus replication via regulation of copper metabolism in yeast.
    Sasvari Z; Kovalev N; Nagy PD
    J Virol; 2013 Feb; 87(3):1800-10. PubMed ID: 23192874
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibition of sterol biosynthesis reduces tombusvirus replication in yeast and plants.
    Sharma M; Sasvari Z; Nagy PD
    J Virol; 2010 Mar; 84(5):2270-81. PubMed ID: 20015981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Translation elongation factor 1A is a component of the tombusvirus replicase complex and affects the stability of the p33 replication co-factor.
    Li Z; Pogany J; Panavas T; Xu K; Esposito AM; Kinzy TG; Nagy PD
    Virology; 2009 Mar; 385(1):245-60. PubMed ID: 19131084
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition of phospholipid biosynthesis decreases the activity of the tombusvirus replicase and alters the subcellular localization of replication proteins.
    Sharma M; Sasvari Z; Nagy PD
    Virology; 2011 Jul; 415(2):141-52. PubMed ID: 21561636
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tombusviruses Target a Major Crossroad in the Endocytic and Recycling Pathways via Co-opting Rab7 Small GTPase.
    Feng Z; Inaba JI; Nagy PD
    J Virol; 2021 Oct; 95(21):e0107621. PubMed ID: 34406861
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A temperature sensitive mutant of heat shock protein 70 reveals an essential role during the early steps of tombusvirus replication.
    Wang RY; Stork J; Pogany J; Nagy PD
    Virology; 2009 Nov; 394(1):28-38. PubMed ID: 19748649
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tombusvirus replication depends on Sec39p endoplasmic reticulum-associated transport protein.
    Sasvari Z; Gonzalez PA; Rachubinski RA; Nagy PD
    Virology; 2013 Dec; 447(1-2):21-31. PubMed ID: 24210096
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tombusvirus RNA replication depends on the TOR pathway in yeast and plants.
    Inaba JI; Nagy PD
    Virology; 2018 Jun; 519():207-222. PubMed ID: 29734044
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct inhibition of tombusvirus plus-strand RNA synthesis by a dominant negative mutant of a host metabolic enzyme, glyceraldehyde-3-phosphate dehydrogenase, in yeast and plants.
    Huang TS; Nagy PD
    J Virol; 2011 Sep; 85(17):9090-102. PubMed ID: 21697488
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A unique role for the host ESCRT proteins in replication of Tomato bushy stunt virus.
    Barajas D; Jiang Y; Nagy PD
    PLoS Pathog; 2009 Dec; 5(12):e1000705. PubMed ID: 20041173
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploiting alternative subcellular location for replication: tombusvirus replication switches to the endoplasmic reticulum in the absence of peroxisomes.
    Jonczyk M; Pathak KB; Sharma M; Nagy PD
    Virology; 2007 Jun; 362(2):320-30. PubMed ID: 17292435
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Translation elongation factor 1A facilitates the assembly of the tombusvirus replicase and stimulates minus-strand synthesis.
    Li Z; Pogany J; Tupman S; Esposito AM; Kinzy TG; Nagy PD
    PLoS Pathog; 2010 Nov; 6(11):e1001175. PubMed ID: 21079685
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Key interplay between the co-opted sorting nexin-BAR proteins and PI3P phosphoinositide in the formation of the tombusvirus replicase.
    Feng Z; Kovalev N; Nagy PD
    PLoS Pathog; 2020 Dec; 16(12):e1009120. PubMed ID: 33370420
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Similar roles for yeast Dbp2 and Arabidopsis RH20 DEAD-box RNA helicases to Ded1 helicase in tombusvirus plus-strand synthesis.
    Kovalev N; Barajas D; Nagy PD
    Virology; 2012 Oct; 432(2):470-84. PubMed ID: 22832121
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of novel host factors via conserved domain search: Cns1 cochaperone is a novel restriction factor of tombusvirus replication in yeast.
    Lin JY; Nagy PD
    J Virol; 2013 Dec; 87(23):12600-10. PubMed ID: 24027337
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Screening a yeast library of temperature-sensitive mutants reveals a role for actin in tombusvirus RNA recombination.
    Prasanth KR; Kovalev N; de Castro Martín IF; Baker J; Nagy PD
    Virology; 2016 Feb; 489():233-42. PubMed ID: 26773384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A key role for heat shock protein 70 in the localization and insertion of tombusvirus replication proteins to intracellular membranes.
    Wang RY; Stork J; Nagy PD
    J Virol; 2009 Apr; 83(7):3276-87. PubMed ID: 19153242
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synergistic roles of eukaryotic translation elongation factors 1Bγ and 1A in stimulation of tombusvirus minus-strand synthesis.
    Sasvari Z; Izotova L; Kinzy TG; Nagy PD
    PLoS Pathog; 2011 Dec; 7(12):e1002438. PubMed ID: 22194687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Global genomics and proteomics approaches to identify host factors as targets to induce resistance against Tomato bushy stunt virus.
    Nagy PD; Pogany J
    Adv Virus Res; 2010; 76():123-77. PubMed ID: 20965073
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic interplay between the co-opted Fis1 mitochondrial fission protein and membrane contact site proteins in supporting tombusvirus replication.
    Lin W; Feng Z; Prasanth KR; Liu Y; Nagy PD
    PLoS Pathog; 2021 Mar; 17(3):e1009423. PubMed ID: 33725015
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.