These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 26136732)

  • 1. When nanoparticles meet biofilms-interactions guiding the environmental fate and accumulation of nanoparticles.
    Ikuma K; Decho AW; Lau BL
    Front Microbiol; 2015; 6():591. PubMed ID: 26136732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between Engineered Pluronic Silica Nanoparticles and Bacterial Biofilms: Elucidating the Role of Nanoparticle Surface Chemistry and EPS Matrix.
    Vitale S; Rampazzo E; Hiebner D; Devlin H; Quinn L; Prodi L; Casey E
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):34502-34512. PubMed ID: 35830504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eco-corona formation on the nanomaterials in the aquatic systems lessens their toxic impact: A comprehensive review.
    Natarajan L; Jenifer MA; Mukherjee A
    Environ Res; 2021 Mar; 194():110669. PubMed ID: 33359698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of nanoplastics with extracellular polymeric substances (EPS) in the aquatic environment: A special reference to eco-corona formation and associated impacts.
    Junaid M; Wang J
    Water Res; 2021 Aug; 201():117319. PubMed ID: 34130084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous Diffusion of Polystyrene Nanoparticles through an Alginate Matrix: The Role of Cross-linking and Particle Size.
    Rodríguez-Suárez JM; Butler CS; Gershenson A; Lau BLT
    Environ Sci Technol; 2020 Apr; 54(8):5159-5166. PubMed ID: 32182039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responses of freshwater biofilm formation processes (from colonization to maturity) to anatase and rutile TiO
    Li K; Qian J; Wang P; Wang C; Lu B; Jin W; He X; Tang S; Zhang C; Gao P
    Water Res; 2020 Sep; 182():115953. PubMed ID: 32559664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sublethal concentrations of silver nanoparticles affect the mechanical stability of biofilms.
    Grün AY; Meier J; Metreveli G; Schaumann GE; Manz W
    Environ Sci Pollut Res Int; 2016 Dec; 23(23):24277-24288. PubMed ID: 27650851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacteria-nanoparticle interactions in the context of nanofouling.
    Deschênes L; Ells T
    Adv Colloid Interface Sci; 2020 Mar; 277():102106. PubMed ID: 31981890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short and long term biosorption of silica-coated iron oxide nanoparticles in heterotrophic biofilms.
    Herrling MP; Lackner S; Tatti O; Guthausen G; Delay M; Franzreb M; Horn H
    Sci Total Environ; 2016 Feb; 544():722-9. PubMed ID: 26674701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of humic acid on the interactions between zinc oxide nanoparticles and bacterial biofilms.
    Ouyang K; Yu XY; Zhu Y; Gao C; Huang Q; Cai P
    Environ Pollut; 2017 Dec; 231(Pt 1):1104-1111. PubMed ID: 28851497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface functionalization-dependent localization and affinity of SiO
    Hiebner DW; Barros C; Quinn L; Vitale S; Casey E
    Biofilm; 2020 Dec; 2():100029. PubMed ID: 33447814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors impacting the interactions of engineered nanoparticles with bacterial cells and biofilms: Mechanistic insights and state of knowledge.
    Joo SH; Aggarwal S
    J Environ Manage; 2018 Nov; 225():62-74. PubMed ID: 30071367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Extracellular DNA-Binding Proteins in the Biofilm Matrix.
    Kavanaugh JS; Flack CE; Lister J; Ricker EB; Ibberson CB; Jenul C; Moormeier DE; Delmain EA; Bayles KW; Horswill AR
    mBio; 2019 Jun; 10(3):. PubMed ID: 31239382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle-Biofilm Interactions: The Role of the EPS Matrix.
    Fulaz S; Vitale S; Quinn L; Casey E
    Trends Microbiol; 2019 Nov; 27(11):915-926. PubMed ID: 31420126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between functionalised silica nanoparticles and Pseudomonas fluorescens biofilm matrix: A focus on the protein corona.
    Barros CHN; Fulaz S; Vitale S; Casey E; Quinn L
    PLoS One; 2020; 15(7):e0236441. PubMed ID: 32701973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Planktonic and biofilm-grown nitrogen-cycling bacteria exhibit different susceptibilities to copper nanoparticles.
    Reyes VC; Opot SO; Mahendra S
    Environ Toxicol Chem; 2015 Apr; 34(4):887-97. PubMed ID: 25556815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of silver nanoparticles on wastewater biofilms.
    Sheng Z; Liu Y
    Water Res; 2011 Nov; 45(18):6039-50. PubMed ID: 21940033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding, Monitoring, and Controlling Biofilm Growth in Drinking Water Distribution Systems.
    Liu S; Gunawan C; Barraud N; Rice SA; Harry EJ; Amal R
    Environ Sci Technol; 2016 Sep; 50(17):8954-76. PubMed ID: 27479445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport behavior of selected nanoparticles with different surface coatings in granular porous media coated with Pseudomonas aeruginosa biofilm.
    Tripathi S; Champagne D; Tufenkji N
    Environ Sci Technol; 2012 Jul; 46(13):6942-9. PubMed ID: 22148225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of silver nanoparticles on intact wastewater biofilms.
    Sheng Z; Van Nostrand JD; Zhou J; Liu Y
    Front Microbiol; 2015; 6():680. PubMed ID: 26217316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.