BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 26136758)

  • 41. Functional phosphoproteomics of oncogenic KRAS signaling.
    Sudhir PR; Chen JY
    Methods Mol Biol; 2014; 1120():157-66. PubMed ID: 24470024
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Integrating phosphoproteomics into kinase-targeted cancer therapies in precision medicine.
    Wu X; Xing X; Dowlut D; Zeng Y; Liu J; Liu X
    J Proteomics; 2019 Jan; 191():68-79. PubMed ID: 29621648
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Parallel reaction monitoring on a Q Exactive mass spectrometer increases reproducibility of phosphopeptide detection in bacterial phosphoproteomics measurements.
    Taumer C; Griesbaum L; Kovacevic A; Soufi B; Nalpas NC; Macek B
    J Proteomics; 2018 Oct; 189():60-66. PubMed ID: 29605292
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Absolute and site-specific quantification of protein phosphorylation using integrated elemental and molecular mass spectrometry: its potential to assess phosphopeptide enrichment procedures.
    Navaza AP; Encinar JR; Carrascal M; Abian J; Sanz-Medel A
    Anal Chem; 2008 Mar; 80(5):1777-87. PubMed ID: 18247585
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Shotguns in the front line: phosphoproteomics in plants.
    Nakagami H; Sugiyama N; Ishihama Y; Shirasu K
    Plant Cell Physiol; 2012 Jan; 53(1):118-24. PubMed ID: 22039104
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantitative Phosphoproteomic Analysis Provides Insight into the Response to Short-Term Drought Stress in Ammopiptanthus mongolicus Roots.
    Sun H; Xia B; Wang X; Gao F; Zhou Y
    Int J Mol Sci; 2017 Oct; 18(10):. PubMed ID: 29039783
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sample preparation and analytical strategies for large-scale phosphoproteomics experiments.
    Kanshin E; Michnick S; Thibault P
    Semin Cell Dev Biol; 2012 Oct; 23(8):843-53. PubMed ID: 22683502
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Coupling functionalized cobalt ferrite nanoparticle enrichment with online LC/MS/MS for top-down phosphoproteomics.
    Chen B; Hwang L; Ochowicz W; Lin Z; Guardado-Alvarez TM; Cai W; Xiu L; Dani K; Colah C; Jin S; Ge Y
    Chem Sci; 2017 Jun; 8(6):4306-4311. PubMed ID: 28660060
    [TBL] [Abstract][Full Text] [Related]  

  • 49. TiSH--a robust and sensitive global phosphoproteomics strategy employing a combination of TiO2, SIMAC, and HILIC.
    Engholm-Keller K; Birck P; Størling J; Pociot F; Mandrup-Poulsen T; Larsen MR
    J Proteomics; 2012 Oct; 75(18):5749-61. PubMed ID: 22906719
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.
    Batth TS; Francavilla C; Olsen JV
    J Proteome Res; 2014 Dec; 13(12):6176-86. PubMed ID: 25338131
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Two Dimensional Gel Electrophoresis-Based Plant Phosphoproteomics.
    Han C; Yang P
    Methods Mol Biol; 2016; 1355():213-23. PubMed ID: 26584928
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Proteomics by mass spectrometry: approaches, advances, and applications.
    Yates JR; Ruse CI; Nakorchevsky A
    Annu Rev Biomed Eng; 2009; 11():49-79. PubMed ID: 19400705
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phosphoproteomics--finally fulfilling the promise?
    Rogers LD; Foster LJ
    Mol Biosyst; 2009 Oct; 5(10):1122-9. PubMed ID: 19756301
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analytical strategies for phosphoproteomics.
    Thingholm TE; Jensen ON; Larsen MR
    Proteomics; 2009 Mar; 9(6):1451-68. PubMed ID: 19235172
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Robust, Reproducible, and Economical Phosphopeptide Enrichment Using Calcium Titanate.
    Ahmed A; Raja VJ; Cavaliere P; Dephoure N
    J Proteome Res; 2019 Mar; 18(3):1411-1417. PubMed ID: 30576142
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phosphoproteomic Analysis of Signaling Pathways in Lymphomas.
    Häupl B; Urlaub H; Oellerich T
    Methods Mol Biol; 2019; 1956():371-381. PubMed ID: 30779046
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CoFe2 O4 -ZnO nanoparticles for rapid microwave-assisted tryptic digestion of phosphoprotein and phosphopeptide analysis by matrix-assisted laser desorption/ionization mass spectrometry.
    Nawaz MI; Hasan N; Wu HF
    Rapid Commun Mass Spectrom; 2016 Jul; 30(13):1443-53. PubMed ID: 27321831
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of Plant Kinase Substrates Based on Kinase Assay-Linked Phosphoproteomics.
    Hsu CC; Arrington JV; Xue L; Tao WA
    Methods Mol Biol; 2017; 1636():327-335. PubMed ID: 28730489
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phosphopeptide Enrichment and LC-MS/MS Analysis to Study the Phosphoproteome of Recombinant Chinese Hamster Ovary Cells.
    Henry M; Coleman O; Prashant ; Clynes M; Meleady P
    Methods Mol Biol; 2017; 1603():195-208. PubMed ID: 28493132
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mass spectrometry-driven phosphoproteomics: patterning the systems biology mosaic.
    Jünger MA; Aebersold R
    Wiley Interdiscip Rev Dev Biol; 2014; 3(1):83-112. PubMed ID: 24902836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.