BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 2613717)

  • 21. Theoretical and computational investigations of nonlinear wave propagations in arteries. (I)--A theoretical model of nonlinear pulse wave propagations.
    Wu SG; Lee GC
    Sci China B; 1989 Jun; 32(6):711-28. PubMed ID: 2775461
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of transmural pressure and muscular activity on pulse waves in arteries.
    Rachev AI
    J Biomech Eng; 1980 May; 102(2):119-23. PubMed ID: 7412234
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wave propagation through a viscous fluid contained in a tethered, initially stresses, orthotropic elastic tube.
    Atabek HB
    Biophys J; 1968 May; 8(5):626-49. PubMed ID: 5699800
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A non-Newtonian fluid model for blood flow through arteries under stenotic conditions.
    Misra JC; Patra MK; Misra SC
    J Biomech; 1993 Sep; 26(9):1129-41. PubMed ID: 8408094
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of initial stresses on the wave propagation in arteries.
    Misra JC; Choudhury KR
    J Math Biol; 1983; 18(1):53-67. PubMed ID: 6631263
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tube law parametrization using in vitro data for one-dimensional blood flow in arteries and veins: TUBE LAW PARAMETRIZATION IN ARTERIES AND VEINS.
    Colombo C; Siviglia A; Toro EF; Bia D; Zócalo Y; Müller LO
    Int J Numer Method Biomed Eng; 2024 Apr; 40(4):e3803. PubMed ID: 38363555
    [TBL] [Abstract][Full Text] [Related]  

  • 27. One-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results.
    Saito M; Ikenaga Y; Matsukawa M; Watanabe Y; Asada T; Lagrée PY
    J Biomech Eng; 2011 Dec; 133(12):121005. PubMed ID: 22206422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Verification of the coupled-momentum method with Womersley's Deformable Wall analytical solution.
    Filonova V; Arthurs CJ; Vignon-Clementel IE; Figueroa CA
    Int J Numer Method Biomed Eng; 2020 Feb; 36(2):e3266. PubMed ID: 31617679
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wall stress and deformation analysis in a numerical model of pulse wave propagation.
    He F; Hua L; Gao L
    Biomed Mater Eng; 2015; 26 Suppl 1():S527-32. PubMed ID: 26406044
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The relation between arterial viscoelasticity and wave propagation in the canine femoral artery in vivo.
    Milnor WR; Bertram CD
    Circ Res; 1978 Dec; 43(6):870-9. PubMed ID: 709749
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements.
    Alastruey J; Khir AW; Matthys KS; Segers P; Sherwin SJ; Verdonck PR; Parker KH; Peiró J
    J Biomech; 2011 Aug; 44(12):2250-8. PubMed ID: 21724188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the propagation of a wave front in viscoelastic arteries.
    Holenstein R; Nerem RM; Niederer PF
    J Biomech Eng; 1984 May; 106(2):115-22. PubMed ID: 6738015
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A viscoelastic model for use in predicting arterial pulse waves.
    Holenstein R; Niederer P; Anliker M
    J Biomech Eng; 1980 Nov; 102(4):318-25. PubMed ID: 6965195
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Validation of a patient-specific one-dimensional model of the systemic arterial tree.
    Reymond P; Bohraus Y; Perren F; Lazeyras F; Stergiopulos N
    Am J Physiol Heart Circ Physiol; 2011 Sep; 301(3):H1173-82. PubMed ID: 21622820
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wave propagation in a viscous fluid contained in an orthotropic elastic tube.
    Mirsky I
    Biophys J; 1967 Mar; 7(2):165-86. PubMed ID: 6048869
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pulse Wave Velocity Prediction and Compliance Assessment in Elastic Arterial Segments.
    Lillie JS; Liberson AS; Mix D; Schwarz KQ; Chandra A; Phillips DB; Day SW; Borkholder DA
    Cardiovasc Eng Technol; 2015 Mar; 6(1):49-58. PubMed ID: 26577102
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wave propagation with different pressure signals: an experimental study on the latex tube.
    Ursino M; Artioli E; Gallerani M
    Med Biol Eng Comput; 1993 Jul; 31(4):363-71. PubMed ID: 8231298
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A quasi-linear constitutive relation for arterial wall materials.
    Demiray H
    J Biomech; 1996 Aug; 29(8):1011-4. PubMed ID: 8817367
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Blood vessel modeling.
    Goldstein LJ; Rypins EB
    Int J Biomed Comput; 1991 Oct; 29(1):23-9. PubMed ID: 1959979
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A one-dimensional model of blood flow in arteries with friction and convection based on the Womersley velocity profile.
    Azer K; Peskin CS
    Cardiovasc Eng; 2007 Jun; 7(2):51-73. PubMed ID: 17566860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.