BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 26137374)

  • 21. Three-dimensional multi-contrast imaging of in vivo human skin by Jones matrix optical coherence tomography.
    Li E; Makita S; Hong YJ; Kasaragod D; Yasuno Y
    Biomed Opt Express; 2017 Mar; 8(3):1290-1305. PubMed ID: 28663829
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel integration of spectral-domain optical-coherence-tomography and laser-ablation system for precision treatment.
    Fan Y; Zhang B; Chang W; Zhang X; Liao H
    Int J Comput Assist Radiol Surg; 2018 Mar; 13(3):411-423. PubMed ID: 28887783
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo optical coherence tomography imaging of human skin: norm and pathology.
    Gladkova ND; Petrova GA; Nikulin NK; Radenska-Lopovok SG; Snopova LB; Chumakov YP; Nasonova VA; Gelikonov VM; Gelikonov GV; Kuranov RV; Sergeev AM; Feldchtein FI
    Skin Res Technol; 2000 Feb; 6(1):6-16. PubMed ID: 11428936
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photothermal optical coherence tomography based on the localized surface plasmon resonance of Au nanoring.
    Chi TT; Tu YC; Li MJ; Chu CK; Chang YW; Yu CK; Kiang YW; Yang CC
    Opt Express; 2014 May; 22(10):11754-69. PubMed ID: 24921297
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo photothermal optical coherence tomography of gold nanorod contrast agents.
    Tucker-Schwartz JM; Meyer TA; Patil CA; Duvall CL; Skala MC
    Biomed Opt Express; 2012 Nov; 3(11):2881-95. PubMed ID: 23162726
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical coherence tomography image-guided smart laser knife for surgery.
    Katta N; McElroy AB; Estrada AD; Milner TE
    Lasers Surg Med; 2018 Mar; 50(3):202-212. PubMed ID: 28782115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
    Wojtkowski M; Srinivasan V; Fujimoto JG; Ko T; Schuman JS; Kowalczyk A; Duker JS
    Ophthalmology; 2005 Oct; 112(10):1734-46. PubMed ID: 16140383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Choroidal analysis in healthy eyes using swept-source optical coherence tomography compared to spectral domain optical coherence tomography.
    Adhi M; Liu JJ; Qavi AH; Grulkowski I; Lu CD; Mohler KJ; Ferrara D; Kraus MF; Baumal CR; Witkin AJ; Waheed NK; Hornegger J; Fujimoto JG; Duker JS
    Am J Ophthalmol; 2014 Jun; 157(6):1272-1281.e1. PubMed ID: 24561169
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multispectral analog-mean-delay fluorescence lifetime imaging combined with optical coherence tomography.
    Nam HS; Kang WJ; Lee MW; Song JW; Kim JW; Oh WY; Yoo H
    Biomed Opt Express; 2018 Apr; 9(4):1930-1947. PubMed ID: 29675330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Imaging the posterior segment of the eye using swept-source optical coherence tomography in myopic glaucoma eyes: comparison with enhanced-depth imaging.
    Park HY; Shin HY; Park CK
    Am J Ophthalmol; 2014 Mar; 157(3):550-7. PubMed ID: 24239773
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of lipid composition on photothermal optical coherence tomography signals.
    Salimi M; Villiger M; Tabatabaei N
    J Biomed Opt; 2020 Dec; 25(12):. PubMed ID: 33369310
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 102-nm, 44.5-MHz inertial-free swept source by mode-locked fiber laser and time stretch technique for optical coherence tomography.
    Kang J; Feng P; Wei X; Lam EY; Tsia KK; Wong KKY
    Opt Express; 2018 Feb; 26(4):4370-4381. PubMed ID: 29475287
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Depth resolved photothermal OCT detection of macrophages in tissue using nanorose.
    Paranjape AS; Kuranov R; Baranov S; Ma LL; Villard JW; Wang T; Sokolov KV; Feldman MD; Johnston KP; Milner TE
    Biomed Opt Express; 2010 Jun; 1(1):2-16. PubMed ID: 21258441
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase-sensitive OCT imaging of multiple nanoparticle species using spectrally multiplexed single pulse photothermal excitation.
    Kim S; Rinehart MT; Park H; Zhu Y; Wax A
    Biomed Opt Express; 2012 Oct; 3(10):2579-86. PubMed ID: 23082297
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extended depth of focus for coherence-based cellular imaging.
    Yin B; Hyun C; Gardecki JA; Tearney GJ
    Optica; 2017 Aug; 4(8):959-965. PubMed ID: 29675447
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source.
    Choma MA; Hsu K; Izatt JA
    J Biomed Opt; 2005; 10(4):44009. PubMed ID: 16178643
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robust motion tracking based on adaptive speckle decorrelation analysis of OCT signal.
    Wang Y; Wang Y; Akansu A; Belfield KD; Hubbi B; Liu X
    Biomed Opt Express; 2015 Nov; 6(11):4302-16. PubMed ID: 26600996
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography.
    Yasuno Y; Hong Y; Makita S; Yamanari M; Akiba M; Miura M; Yatagai T
    Opt Express; 2007 May; 15(10):6121-39. PubMed ID: 19546917
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection of pH-induced aggregation of "smart" gold nanoparticles with photothermal optical coherence tomography.
    Xiao P; Li Q; Joo Y; Nam J; Hwang S; Song J; Kim S; Joo C; Kim KH
    Opt Lett; 2013 Nov; 38(21):4429-32. PubMed ID: 24177111
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sensitivity enhancement in swept-source optical coherence tomography by parametric balanced detector and amplifier.
    Kang J; Wei X; Li B; Wang X; Yu L; Tan S; Jinata C; Wong KK
    Biomed Opt Express; 2016 Apr; 7(4):1294-304. PubMed ID: 27446655
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.