BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 26138048)

  • 1. Efficient high-throughput biological process characterization: Definitive screening design with the ambr250 bioreactor system.
    Tai M; Ly A; Leung I; Nayar G
    Biotechnol Prog; 2015; 31(5):1388-95. PubMed ID: 26138048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of high-throughput mini-bioreactor system for systematic scale-down modeling, process characterization, and control strategy development.
    Janakiraman V; Kwiatkowski C; Kshirsagar R; Ryll T; Huang YM
    Biotechnol Prog; 2015; 31(6):1623-32. PubMed ID: 26317495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microtiter miniature shaken bioreactor system as a scale-down model for process development of production of therapeutic alpha-interferon2b by recombinant Escherichia coli.
    Tan JS; Abbasiliasi S; Kadkhodaei S; Tam YJ; Tang TK; Lee YY; Ariff AB
    BMC Microbiol; 2018 Jan; 18(1):3. PubMed ID: 29439680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic biolector-microfluidic bioprocess control in microtiter plates.
    Funke M; Buchenauer A; Schnakenberg U; Mokwa W; Diederichs S; Mertens A; Müller C; Kensy F; Büchs J
    Biotechnol Bioeng; 2010 Oct; 107(3):497-505. PubMed ID: 20517981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control.
    Rameez S; Mostafa SS; Miller C; Shukla AA
    Biotechnol Prog; 2014; 30(3):718-27. PubMed ID: 24449637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of Multiparameters for Increased Yields of Cytochrome B5 in Bioreactors.
    Pereira RFS; de Carvalho CCCR
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automation assisted anaerobic phenotyping for metabolic engineering.
    Raj K; Venayak N; Diep P; Golla SA; Yakunin AF; Mahadevan R
    Microb Cell Fact; 2021 Sep; 20(1):184. PubMed ID: 34556155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput microbioreactor provides a capable tool for early stage bioprocess development.
    Fink M; Cserjan-Puschmann M; Reinisch D; Striedner G
    Sci Rep; 2021 Jan; 11(1):2056. PubMed ID: 33479431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid modeling as a QbD/PAT tool in process development: an industrial E. coli case study.
    von Stosch M; Hamelink JM; Oliveira R
    Bioprocess Biosyst Eng; 2016 May; 39(5):773-84. PubMed ID: 26879643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex Reconstitution and Characterization by Combining Co-expression Techniques in Escherichia coli with High-Throughput.
    Vincentelli R; Romier C
    Adv Exp Med Biol; 2016; 896():43-58. PubMed ID: 27165318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated Robotic Mini Bioreactor Platform for Automated, Parallel Microbial Cultivation With Online Data Handling and Process Control.
    Haby B; Hans S; Anane E; Sawatzki A; Krausch N; Neubauer P; Cruz Bournazou MN
    SLAS Technol; 2019 Dec; 24(6):569-582. PubMed ID: 31288593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward intensifying design of experiments in upstream bioprocess development: An industrial Escherichia coli feasibility study.
    von Stosch M; Hamelink JM; Oliveira R
    Biotechnol Prog; 2016 Sep; 32(5):1343-1352. PubMed ID: 27126552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A strategy for clone selection under different production conditions.
    Legmann R; Benoit B; Fedechko RW; Deppeler CL; Srinivasan S; Robins RH; McCormick EL; Ferrick DA; Rodgers ST; Russo AP
    Biotechnol Prog; 2011; 27(3):757-65. PubMed ID: 21448991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH measurement and a rational and practical pH control strategy for high throughput cell culture system.
    Zhou H; Purdie J; Wang T; Ouyang A
    Biotechnol Prog; 2010; 26(3):872-80. PubMed ID: 20039376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Throughput Expression of Inclusion Bodies on an Automated Platform.
    Kemmer A; Cai L; Cruz Bournazou MN; Neubauer P
    Methods Mol Biol; 2023; 2617():31-47. PubMed ID: 36656515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a Saccharomyces cerevisiae fermentation process for production of a therapeutic recombinant protein using a multivariate Bayesian approach.
    Fu Z; Baker D; Cheng A; Leighton J; Appelbaum E; Aon J
    Biotechnol Prog; 2016 May; 32(3):799-812. PubMed ID: 27095416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scale-up of Escherichia coli growth and recombinant protein expression conditions from microwell to laboratory and pilot scale based on matched k(L)a.
    Islam RS; Tisi D; Levy MS; Lye GJ
    Biotechnol Bioeng; 2008 Apr; 99(5):1128-39. PubMed ID: 17969169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated disposable small scale reactor for high throughput bioprocess development: a proof of concept study.
    Bareither R; Bargh N; Oakeshott R; Watts K; Pollard D
    Biotechnol Bioeng; 2013 Dec; 110(12):3126-38. PubMed ID: 23775295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast and reliable strain characterization of Streptomyces lividans through micro-scale cultivation.
    Koepff J; Keller M; Tsolis KC; Busche T; Rückert C; Hamed MB; Anné J; Kalinowski J; Wiechert W; Economou A; Oldiges M
    Biotechnol Bioeng; 2017 Sep; 114(9):2011-2022. PubMed ID: 28436005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of power consumption and oxygen transfer characteristics of a stirred miniature bioreactor for predictive fermentation scale-up.
    Gill NK; Appleton M; Baganz F; Lye GJ
    Biotechnol Bioeng; 2008 Aug; 100(6):1144-55. PubMed ID: 18404769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.