These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 26138116)

  • 1. Optimization of Culture Medium for Maximal Production of Spinosad Using an Artificial Neural Network - Genetic Algorithm Modeling.
    Lan Z; Zhao C; Guo W; Guan X; Zhang X
    J Mol Microbiol Biotechnol; 2015; 25(4):253-61. PubMed ID: 26138116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced production of spinosad in Saccharopolyspora spinosa by genome shuffling.
    Jin ZH; Xu B; Lin SZ; Jin QC; Cen PL
    Appl Biochem Biotechnol; 2009 Dec; 159(3):655-63. PubMed ID: 19132553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Medium optimization for mycelia production of Antrodia camphorata based on artificial neural network-genetic algorithm].
    Lu Z; He Z; Xu H; Shi J; Xu Z
    Sheng Wu Gong Cheng Xue Bao; 2011 Dec; 27(12):1773-9. PubMed ID: 22506418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative transcriptomic analysis of two Saccharopolyspora spinosa strains reveals the relationships between primary metabolism and spinosad production.
    Zhang Y; Liu X; Yin T; Li Q; Zou Q; Huang K; Guo D; Zhang X
    Sci Rep; 2021 Jul; 11(1):14779. PubMed ID: 34285307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of fermentation medium for triterpenoid production from Antrodia camphorata ATCC 200183 using artificial intelligence-based techniques.
    Lu ZM; Lei JY; Xu HY; Shi JS; Xu ZH
    Appl Microbiol Biotechnol; 2011 Oct; 92(2):371-9. PubMed ID: 21870045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Medium optimization for pyrroloquinoline quinone (PQQ) production by Methylobacillus sp. zju323 using response surface methodology and artificial neural network-genetic algorithm.
    Wei P; Si Z; Lu Y; Yu Q; Huang L; Xu Z
    Prep Biochem Biotechnol; 2017 Aug; 47(7):709-719. PubMed ID: 28448745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of actinomycin V production by Streptomyces triostinicus using artificial neural network and genetic algorithm.
    Singh V; Khan M; Khan S; Tripathi CK
    Appl Microbiol Biotechnol; 2009 Feb; 82(2):379-85. PubMed ID: 19137288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial Intelligence versus Statistical Modeling and Optimization of Cholesterol Oxidase Production by using Streptomyces Sp.
    Pathak L; Singh V; Niwas R; Osama K; Khan S; Haque S; Tripathi CK; Mishra BN
    PLoS One; 2015; 10(9):e0137268. PubMed ID: 26368924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of Spinosad Production upon Utilization of Oils and Manipulation of β-Oxidation in a High-Producing Saccharopolyspora spinosa Strain.
    Huang Y; Zhang X; Zhao C; Zhuang X; Zhu L; Guo C; Song Y
    J Mol Microbiol Biotechnol; 2018; 28(2):53-64. PubMed ID: 29730661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-scale metabolic network reconstruction of Saccharopolyspora spinosa for spinosad production improvement.
    Wang X; Zhang C; Wang M; Lu W
    Microb Cell Fact; 2014 Mar; 13(1):41. PubMed ID: 24628959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Four-stage dissolved oxygen strategy based on multi-scale analysis for improving spinosad yield by Saccharopolyspora spinosa ATCC49460.
    Bai Y; Zhou PP; Fan P; Zhu YM; Tong Y; Wang HB; Yu LJ
    Microb Biotechnol; 2015 May; 8(3):561-8. PubMed ID: 25808914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Advances in the biosynthesis of spinosad - A review].
    Sheng Z; Chen K; Li X
    Wei Sheng Wu Xue Bao; 2016 Mar; 56(3):397-405. PubMed ID: 27382783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolomics analysis of the effect of dissolved oxygen on spinosad production by Saccharopolyspora spinosa.
    Lu C; Yin J; Zhao F; Li F; Lu W
    Antonie Van Leeuwenhoek; 2017 May; 110(5):677-685. PubMed ID: 28154945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative metabolomics analysis of Saccharopolyspora spinosa WT, WH124, and LU104 revealed metabolic mechanisms correlated with increases in spinosad yield.
    Zhao F; Xue C; Wang M; Wang X; Lu W
    Biosci Biotechnol Biochem; 2013; 77(8):1661-8. PubMed ID: 23924726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies for Enhancing the Yield of the Potent Insecticide Spinosad in Actinomycetes.
    Tao H; Zhang Y; Deng Z; Liu T
    Biotechnol J; 2019 Jan; 14(1):e1700769. PubMed ID: 29897659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of Saccharopolyspora spinosa and the kinetic analysis for spinosad production.
    Liang Y; Lu W; Wen J
    Appl Biochem Biotechnol; 2009 Mar; 152(3):440-8. PubMed ID: 18594774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of culture medium and modeling of curdlan production from Paenibacillus polymyxa by RSM and ANN.
    Rafigh SM; Yazdi AV; Vossoughi M; Safekordi AA; Ardjmand M
    Int J Biol Macromol; 2014 Sep; 70():463-73. PubMed ID: 25062991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain construction for enhanced production of spinosad via intergeneric protoplast fusion.
    Wang C; Zhang X; Chen Z; Wen Y; Song Y
    Can J Microbiol; 2009 Sep; 55(9):1070-5. PubMed ID: 19898549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Conditions for protoplast preparation of spinosyn-producing strain and the physiological properties of protoplast-regenerated strains].
    Luo Y; Ding X; Xia L; Wang H; Huang F; Tang Y
    Sheng Wu Gong Cheng Xue Bao; 2009 Mar; 25(3):360-7. PubMed ID: 19621575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Level of Spinosad Production in the Heterologous Host Saccharopolyspora erythraea.
    Huang J; Yu Z; Li MH; Wang JD; Bai H; Zhou J; Zheng YG
    Appl Environ Microbiol; 2016 Sep; 82(18):5603-11. PubMed ID: 27401975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.