These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 26138148)

  • 21. Sensorimotor learning with stereo auditory feedback for a brain-computer interface.
    McCreadie KA; Coyle DH; Prasad G
    Med Biol Eng Comput; 2013 Mar; 51(3):285-93. PubMed ID: 23197181
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How many people are able to operate an EEG-based brain-computer interface (BCI)?
    Guger C; Edlinger G; Harkam W; Niedermayer I; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):145-7. PubMed ID: 12899258
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neurophysiological predictor of SMR-based BCI performance.
    Blankertz B; Sannelli C; Halder S; Hammer EM; Kübler A; Müller KR; Curio G; Dickhaus T
    Neuroimage; 2010 Jul; 51(4):1303-9. PubMed ID: 20303409
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Learning to modulate sensorimotor rhythms with stereo auditory feedback for a brain-computer interface.
    McCreadie KA; Coyle DH; Prasad G
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6711-4. PubMed ID: 23367469
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Psychological predictors of SMR-BCI performance.
    Hammer EM; Halder S; Blankertz B; Sannelli C; Dickhaus T; Kleih S; Müller KR; Kübler A
    Biol Psychol; 2012 Jan; 89(1):80-6. PubMed ID: 21964375
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An auditory brain-computer interface (BCI).
    Nijboer F; Furdea A; Gunst I; Mellinger J; McFarland DJ; Birbaumer N; Kübler A
    J Neurosci Methods; 2008 Jan; 167(1):43-50. PubMed ID: 17399797
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Daily training with realistic visual feedback improves reproducibility of event-related desynchronisation following hand motor imagery.
    Ono T; Kimura A; Ushiba J
    Clin Neurophysiol; 2013 Sep; 124(9):1779-86. PubMed ID: 23643578
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Noninvasive Brain-Computer Interface for Real-Time Speech Synthesis: The Importance of Multimodal Feedback.
    Brumberg JS; Pitt KM; Burnison JD
    IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):874-881. PubMed ID: 29641392
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Common Spatial Pattern Patches: online evaluation on BCI-naive users.
    Sannelli C; Vidaurre C; Müller KR; Blankertz B
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4744-7. PubMed ID: 23366988
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the feasibility of using motor imagery EEG-based brain-computer interface in chronic tetraplegics for assistive robotic arm control: a clinical test and long-term post-trial follow-up.
    Onose G; Grozea C; Anghelescu A; Daia C; Sinescu CJ; Ciurea AV; Spircu T; Mirea A; Andone I; Spânu A; Popescu C; Mihăescu AS; Fazli S; Danóczy M; Popescu F
    Spinal Cord; 2012 Aug; 50(8):599-608. PubMed ID: 22410845
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Machine-learning-based coadaptive calibration for brain-computer interfaces.
    Vidaurre C; Sannelli C; Müller KR; Blankertz B
    Neural Comput; 2011 Mar; 23(3):791-816. PubMed ID: 21162666
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses.
    Ramos-Murguialday A; Schürholz M; Caggiano V; Wildgruber M; Caria A; Hammer EM; Halder S; Birbaumer N
    PLoS One; 2012; 7(10):e47048. PubMed ID: 23071707
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neurofeedback-based motor imagery training for brain-computer interface (BCI).
    Hwang HJ; Kwon K; Im CH
    J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Short progressive muscle relaxation or motor coordination training does not increase performance in a brain-computer interface based on sensorimotor rhythms (SMR).
    Botrel L; Acqualagna L; Blankertz B; Kübler A
    Int J Psychophysiol; 2017 Nov; 121():29-37. PubMed ID: 28870435
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Berlin Brain--Computer Interface: accurate performance from first-session in BCI-naïve subjects.
    Blankertz B; Losch F; Krauledat M; Dornhege G; Curio G; Müller KR
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2452-62. PubMed ID: 18838371
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using NIRS as a predictor for EEG-based BCI performance.
    Fazli S; Mehnert J; Steinbrink J; Blankertz B
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4911-4. PubMed ID: 23367029
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The comparison of motor learning performance with and without feedback.
    Orand A; Ushiba J; Tomita Y; Honda S
    Somatosens Mot Res; 2012; 29(3):103-10. PubMed ID: 22746218
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multimodal sensory feedback associated with motor attempts alters BOLD responses to paralyzed hand movement in chronic stroke patients.
    Ono T; Tomita Y; Inose M; Ota T; Kimura A; Liu M; Ushiba J
    Brain Topogr; 2015 Mar; 28(2):340-51. PubMed ID: 25053224
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG.
    Kaiser V; Bauernfeind G; Kreilinger A; Kaufmann T; Kübler A; Neuper C; Müller-Putz GR
    Neuroimage; 2014 Jan; 85 Pt 1():432-44. PubMed ID: 23651839
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Brain-Computer Interfaces With Multi-Sensory Feedback for Stroke Rehabilitation: A Case Study.
    Irimia DC; Cho W; Ortner R; Allison BZ; Ignat BE; Edlinger G; Guger C
    Artif Organs; 2017 Nov; 41(11):E178-E184. PubMed ID: 29148137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.