BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 26138211)

  • 21. Detection methods for centrifugal microfluidic platforms.
    Burger R; Amato L; Boisen A
    Biosens Bioelectron; 2016 Feb; 76():54-67. PubMed ID: 26166363
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Centrifugal microfluidics for biomedical applications.
    Gorkin R; Park J; Siegrist J; Amasia M; Lee BS; Park JM; Kim J; Kim H; Madou M; Cho YK
    Lab Chip; 2010 Jul; 10(14):1758-73. PubMed ID: 20512178
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Progress toward multiplexed sample-to-result detection in low resource settings using microfluidic immunoassay cards.
    Lafleur L; Stevens D; McKenzie K; Ramachandran S; Spicar-Mihalic P; Singhal M; Arjyal A; Osborn J; Kauffman P; Yager P; Lutz B
    Lab Chip; 2012 Mar; 12(6):1119-27. PubMed ID: 22311085
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bubble pump: scalable strategy for in-plane liquid routing.
    Oskooei A; Günther A
    Lab Chip; 2015 Jul; 15(13):2842-53. PubMed ID: 26016773
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comprehensive Study of the Flow Control Strategy in a Wirelessly Charged Centrifugal Microfluidic Platform with Two Rotation Axes.
    Zhu Y; Chen Y; Meng X; Wang J; Lu Y; Xu Y; Cheng J
    Anal Chem; 2017 Sep; 89(17):9315-9321. PubMed ID: 28764326
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Push pull microfluidics on a multi-level 3D CD.
    Thio TH; Ibrahim F; Al-Faqheri W; Moebius J; Khalid NS; Soin N; Kahar MK; Madou M
    Lab Chip; 2013 Aug; 13(16):3199-209. PubMed ID: 23774994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Network simulation-based optimization of centrifugo-pneumatic blood plasma separation.
    Zehnle S; Rombach M; Zengerle R; von Stetten F; Paust N
    Biomicrofluidics; 2017 Mar; 11(2):024114. PubMed ID: 28798850
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reciprocating flow-based centrifugal microfluidics mixer.
    Noroozi Z; Kido H; Micic M; Pan H; Bartolome C; Princevac M; Zoval J; Madou M
    Rev Sci Instrum; 2009 Jul; 80(7):075102. PubMed ID: 19655976
    [TBL] [Abstract][Full Text] [Related]  

  • 29. LabDisk for SAXS: a centrifugal microfluidic sample preparation platform for small-angle X-ray scattering.
    Schwemmer F; Blanchet CE; Spilotros A; Kosse D; Zehnle S; Mertens HD; Graewert MA; Rössle M; Paust N; Svergun DI; von Stetten F; Zengerle R; Mark D
    Lab Chip; 2016 Apr; 16(7):1161-70. PubMed ID: 26931639
    [TBL] [Abstract][Full Text] [Related]  

  • 30. System-level network simulation for robust centrifugal-microfluidic lab-on-a-chip systems.
    Schwarz I; Zehnle S; Hutzenlaub T; Zengerle R; Paust N
    Lab Chip; 2016 May; 16(10):1873-85. PubMed ID: 27095248
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic platforms for lab-on-a-chip applications.
    Haeberle S; Zengerle R
    Lab Chip; 2007 Sep; 7(9):1094-110. PubMed ID: 17713606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A multiplexed immunoassay system based upon reciprocating centrifugal microfluidics.
    Noroozi Z; Kido H; Peytavi R; Nakajima-Sasaki R; Jasinskas A; Micic M; Felgner PL; Madou MJ
    Rev Sci Instrum; 2011 Jun; 82(6):064303. PubMed ID: 21721711
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches.
    Lai CW; Lin YH; Lee GB
    Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wirelessly powered and remotely controlled valve-array for highly multiplexed analytical assay automation on a centrifugal microfluidic platform.
    Torres Delgado SM; Kinahan DJ; Nirupa Julius LA; Mallette A; Ardila DS; Mishra R; Miyazaki CM; Korvink JG; Ducrée J; Mager D
    Biosens Bioelectron; 2018 Jun; 109():214-223. PubMed ID: 29567566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Siphon-Controlled Automation on a Lab-on-a-Disc Using Event-Triggered Dissolvable Film Valves.
    Henderson BD; Kinahan DJ; Rio J; Mishra R; King D; Torres-Delgado SM; Mager D; Korvink JG; Ducrée J
    Biosensors (Basel); 2021 Mar; 11(3):. PubMed ID: 33800811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Centrifugo-pneumatic valve for metering of highly wetting liquids on centrifugal microfluidic platforms.
    Mark D; Metz T; Haeberle S; Lutz S; Ducrée J; Zengerle R; von Stetten F
    Lab Chip; 2009 Dec; 9(24):3599-603. PubMed ID: 20024042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Density-gradient-assisted centrifugal microfluidics: an approach to continuous-mode particle separation.
    Ukita Y; Oguro T; Takamura Y
    Biomed Microdevices; 2017 Jun; 19(2):24. PubMed ID: 28378147
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A micro-dispenser for long-term storage and controlled release of liquids.
    Kazemzadeh A; Eriksson A; Madou M; Russom A
    Nat Commun; 2019 Jan; 10(1):189. PubMed ID: 30643146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rigorous buoyancy driven bubble mixing for centrifugal microfluidics.
    Burger S; Schulz M; von Stetten F; Zengerle R; Paust N
    Lab Chip; 2016 Jan; 16(2):261-8. PubMed ID: 26607320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A high throughput perfusion-based microbioreactor platform integrated with pneumatic micropumps for three-dimensional cell culture.
    Wu MH; Huang SB; Cui Z; Cui Z; Lee GB
    Biomed Microdevices; 2008 Apr; 10(2):309-19. PubMed ID: 18026840
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.