These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 26138310)

  • 1. Acoustothermal heating of polydimethylsiloxane microfluidic system.
    Ha BH; Lee KS; Destgeer G; Park J; Choung JS; Jung JH; Shin JH; Sung HJ
    Sci Rep; 2015 Jul; 5():11851. PubMed ID: 26138310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of Dynamic Free-Form Temperature Gradients in a Disposable Microchip.
    Ha BH; Park J; Destgeer G; Jung JH; Sung HJ
    Anal Chem; 2015 Nov; 87(22):11568-74. PubMed ID: 26487447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustothermal tweezer for droplet sorting in a disposable microfluidic chip.
    Park J; Jung JH; Destgeer G; Ahmed H; Park K; Sung HJ
    Lab Chip; 2017 Mar; 17(6):1031-1040. PubMed ID: 28243644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal considerations for microswimmer trap-and-release using standing surface acoustic waves.
    Cui M; Kim M; Weisensee PB; Meacham JM
    Lab Chip; 2021 Jun; 21(13):2534-2543. PubMed ID: 33998632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sheathless Focusing and Separation of Microparticles Using Tilted-Angle Traveling Surface Acoustic Waves.
    Ahmed H; Destgeer G; Park J; Afzal M; Sung HJ
    Anal Chem; 2018 Jul; 90(14):8546-8552. PubMed ID: 29911381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves.
    Destgeer G; Sung HJ
    Lab Chip; 2015 Jul; 15(13):2722-38. PubMed ID: 26016538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast microfluidics using surface acoustic waves.
    Yeo LY; Friend JR
    Biomicrofluidics; 2009 Jan; 3(1):12002. PubMed ID: 19693383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic flow switching
    Jung JH; Destgeer G; Park J; Ahmed H; Park K; Sung HJ
    RSC Adv; 2018 Jan; 8(6):3206-3212. PubMed ID: 35541169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing a surface acoustic wave-induced microfluidic cell lysis device for point-of-care DNA amplification.
    Husseini AA; Yazdani AM; Ghadiri F; Şişman A
    Eng Life Sci; 2024 Jan; 24(1):e2300230. PubMed ID: 38187928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment.
    Sankaranarayanan SK; Cular S; Bhethanabotla VR; Joseph B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066308. PubMed ID: 18643372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface acoustic wave characterization of optical sol-gel thin layers.
    Fall D; Compoint F; Duquennoy M; Piombini H; Ouaftouh M; Jenot F; Piwakowski B; Belleville P; Ambard C
    Ultrasonics; 2016 May; 68():102-7. PubMed ID: 26930248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature distribution effects on micro-CFPCR performance.
    Chen PC; Nikitopoulos DE; Soper SA; Murphy MC
    Biomed Microdevices; 2008 Apr; 10(2):141-52. PubMed ID: 17896180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-acoustic-wave counterflow micropumps for on-chip liquid motion control in two-dimensional microchannel arrays.
    Masini L; Cecchini M; Girardo S; Cingolani R; Pisignano D; Beltram F
    Lab Chip; 2010 Aug; 10(15):1997-2000. PubMed ID: 20526514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical analysis of wave generation and propagation in a focused surface acoustic wave device for potential microfluidics applications.
    Sankaranarayanan SK; Bhethanabotla VR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):631-43. PubMed ID: 19411221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly focused high-frequency travelling surface acoustic waves (SAW) for rapid single-particle sorting.
    Collins DJ; Neild A; Ai Y
    Lab Chip; 2016 Feb; 16(3):471-9. PubMed ID: 26646200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detachable Acoustofluidic System for Particle Separation via a Traveling Surface Acoustic Wave.
    Ma Z; Collins DJ; Ai Y
    Anal Chem; 2016 May; 88(10):5316-23. PubMed ID: 27086552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface acoustic wave induced particle manipulation in a PDMS channel--principle concepts for continuous flow applications.
    Johansson L; Enlund J; Johansson S; Katardjiev I; Yantchev V
    Biomed Microdevices; 2012 Apr; 14(2):279-89. PubMed ID: 22076383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated microfluidic chip enabling control and spatially resolved monitoring of temperature in micro flow reactors.
    Hoera C; Ohla S; Shu Z; Beckert E; Nagl S; Belder D
    Anal Bioanal Chem; 2015 Jan; 407(2):387-96. PubMed ID: 25377779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transportation of single cell and microbubbles by phase-shift introduced to standing leaky surface acoustic waves.
    Meng L; Cai F; Zhang Z; Niu L; Jin Q; Yan F; Wu J; Wang Z; Zheng H
    Biomicrofluidics; 2011 Dec; 5(4):44104-4410410. PubMed ID: 22662056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic Streaming Efficiency in a Microfluidic Biosensor with an Integrated CMUT.
    Pelenis D; Vanagas G; Barauskas D; Dzikaras M; Mikolajūnas M; Viržonis D
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.