These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 26138311)

  • 1. Investigation on Transient Oscillation of Droplet Deformation before Conical Breakup under Alternating Current Electric Field.
    Yan H; He L; Luo X; Wang J; Huang X; Lü Y; Yang D
    Langmuir; 2015 Aug; 31(30):8275-83. PubMed ID: 26138311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breakup characteristics of aqueous droplet with surfactant in oil under direct current electric field.
    Luo X; Yan H; Huang X; Yang D; Wang J; He L
    J Colloid Interface Sci; 2017 Nov; 505():460-466. PubMed ID: 28633117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catastrophic drop breakup in electric field.
    Raut JS; Akella S; Singh A; Naik VM
    Langmuir; 2009 May; 25(9):4829-34. PubMed ID: 19334721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental validation of a numerical model for predicting the trajectory of blood drops in typical crime scene conditions, including droplet deformation and breakup, with a study of the effect of indoor air currents and wind on typical spatter drop trajectories.
    Kabaliuk N; Jermy MC; Williams E; Laber TL; Taylor MC
    Forensic Sci Int; 2014 Dec; 245():107-20. PubMed ID: 25447183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mono-emulsion droplet stretching under direct current electric field.
    Abbasi MS; Song R; Kim SM; Kim H; Lee J
    Soft Matter; 2019 Mar; 15(11):2328-2335. PubMed ID: 30688346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of the breakup process of viscous droplets by an external electric field inside a microfluidic device.
    Li Y; Jain M; Ma Y; Nandakumar K
    Soft Matter; 2015 May; 11(19):3884-99. PubMed ID: 25864524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavior Evolution of Droplets Suspended in Castor Oil under Alternating Current Electric Field.
    Ou G; Li J; Jin Y; Chen M; Ma Y; Gao K
    Langmuir; 2022 Feb; 38(6):2084-2093. PubMed ID: 35119874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Periodic deformation of microsize droplets in a microchannel induced by a transverse alternating electric field.
    Mochizuki T
    Langmuir; 2013 Oct; 29(41):12879-90. PubMed ID: 24090269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Nonionic Surfactant on the Deformation and Breakup of a Drop in an Electric Field.
    Ha JW; Yang SM
    J Colloid Interface Sci; 1998 Oct; 206(1):195-204. PubMed ID: 9761644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformation of a droplet in an electric field: nonlinear transient response in perfect and leaky dielectric media.
    Supeene G; Koch CR; Bhattacharjee S
    J Colloid Interface Sci; 2008 Feb; 318(2):463-76. PubMed ID: 17997406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confinement effect on electrically induced dynamics of a droplet in shear flow.
    Santra S; Mandal S; Chakraborty S
    Phys Rev E; 2019 Sep; 100(3-1):033101. PubMed ID: 31640051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deformation and breakup of a liquid droplet past a solid circular cylinder: a lattice Boltzmann study.
    Li Q; Chai Z; Shi B; Liang H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043015. PubMed ID: 25375601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows.
    Mulligan MK; Rothstein JP
    Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimodal breakup of a double emulsion droplet under an electric field.
    Abbasi MS; Song R; Kim H; Lee J
    Soft Matter; 2019 Mar; 15(10):2292-2300. PubMed ID: 30776042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deformation of Emulsion Droplet with Clean and Particle-Covered Interface under an Electric Field.
    Abbasi MS; Farooq H; Ali H; Kazim AH; Nazir R; Shabbir A; Cho S; Song R; Lee J
    Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32635514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulations of a weakly conducting droplet under the influence of an alternating electric field.
    Sahu KC; Tripathi MK; Chaudhari J; Chakraborty S
    Electrophoresis; 2020 Dec; 41(23):1953-1960. PubMed ID: 32776578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Droplet breakup in subsea oil releases--part 2: predictions of droplet size distributions with and without injection of chemical dispersants.
    Johansen Ø; Brandvik PJ; Farooq U
    Mar Pollut Bull; 2013 Aug; 73(1):327-35. PubMed ID: 23664635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field induced anomalous spreading, oscillation, ejection, spinning, and breaking of oil droplets on a strongly slipping water surface.
    Kumar S; Sarma B; Dasmahapatra AK; Dalal A; Basu DN; Bandyopadhyay D
    Faraday Discuss; 2017 Jul; 199():115-128. PubMed ID: 28422194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Numerical Investigation on Droplet Bag Breakup Behavior of Polymer Solution.
    Chu G; Qian L; Zhong X; Zhu C; Chen Z
    Polymers (Basel); 2020 Sep; 12(10):. PubMed ID: 32977399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.