These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. CTLA-4 blockade enhances antitumor immunity of intratumoral injection of immature dendritic cells into irradiated tumor in a mouse colon cancer model. Son CH; Bae JH; Shin DY; Lee HR; Choi YJ; Jo WS; Ho Jung M; Kang CD; Yang K; Park YS J Immunother; 2014 Jan; 37(1):1-7. PubMed ID: 24316550 [TBL] [Abstract][Full Text] [Related]
43. Generation of antitumor immunity by cytotoxic T lymphocyte epitope peptide vaccination, CpG-oligodeoxynucleotide adjuvant, and CTLA-4 blockade. Davila E; Kennedy R; Celis E Cancer Res; 2003 Jun; 63(12):3281-8. PubMed ID: 12810660 [TBL] [Abstract][Full Text] [Related]
44. The PARP1 inhibitor BMN 673 exhibits immunoregulatory effects in a Brca1(-/-) murine model of ovarian cancer. Huang J; Wang L; Cong Z; Amoozgar Z; Kiner E; Xing D; Orsulic S; Matulonis U; Goldberg MS Biochem Biophys Res Commun; 2015 Aug; 463(4):551-6. PubMed ID: 26047697 [TBL] [Abstract][Full Text] [Related]
46. Monotherapeutically nonactive CTLA-4 blockade results in greatly enhanced antitumor effects when combined with tumor-targeted superantigens in a B16 melanoma model. Sundstedt A; Celander M; Eriksson H; Törngren M; Hedlund G J Immunother; 2012 May; 35(4):344-53. PubMed ID: 22495392 [TBL] [Abstract][Full Text] [Related]
47. CTLA-4 blockade with ipilimumab: biology, safety, efficacy, and future considerations. Camacho LH Cancer Med; 2015 May; 4(5):661-72. PubMed ID: 25619164 [TBL] [Abstract][Full Text] [Related]
48. PARP inhibition induces BAX/BAK-independent synthetic lethality of BRCA1-deficient non-small cell lung cancer. Paul I; Savage KI; Blayney JK; Lamers E; Gately K; Kerr K; Sheaff M; Arthur K; Richard DJ; Hamilton PW; James JA; O'Byrne KJ; Harkin DP; Quinn JE; Fennell DA J Pathol; 2011 Aug; 224(4):564-74. PubMed ID: 21706479 [TBL] [Abstract][Full Text] [Related]
49. The immunomodulatory effects of pegylated liposomal doxorubicin are amplified in BRCA1--deficient ovarian tumors and can be exploited to improve treatment response in a mouse model. Mantia-Smaldone G; Ronner L; Blair A; Gamerman V; Morse C; Orsulic S; Rubin S; Gimotty P; Adams S Gynecol Oncol; 2014 Jun; 133(3):584-90. PubMed ID: 24680909 [TBL] [Abstract][Full Text] [Related]
50. Plectin-targeted liposomes enhance the therapeutic efficacy of a PARP inhibitor in the treatment of ovarian cancer. Dasa SSK; Diakova G; Suzuki R; Mills AM; Gutknecht MF; Klibanov AL; Slack-Davis JK; Kelly KA Theranostics; 2018; 8(10):2782-2798. PubMed ID: 29774075 [TBL] [Abstract][Full Text] [Related]
51. BRCA1 and BRCA2 deficient tumour models generate distinct ovarian tumour microenvironments and differential responses to therapy. Farokhi Boroujeni S; Rodriguez G; Galpin K; Yakubovich E; Murshed H; Ibrahim D; Asif S; Vanderhyden BC J Ovarian Res; 2023 Nov; 16(1):231. PubMed ID: 38017453 [TBL] [Abstract][Full Text] [Related]
52. Olaparib: an oral PARP-1 and PARP-2 inhibitor with promising activity in ovarian cancer. Gunderson CC; Moore KN Future Oncol; 2015; 11(5):747-57. PubMed ID: 25757679 [TBL] [Abstract][Full Text] [Related]
53. Combination of erlotinib and a PARP inhibitor inhibits growth of A2780 tumor xenografts due to increased autophagy. Sui H; Shi C; Yan Z; Li H Drug Des Devel Ther; 2015; 9():3183-90. PubMed ID: 26124641 [TBL] [Abstract][Full Text] [Related]
54. Rationale for chemotherapy, immunotherapy, and checkpoint blockade in SCLC: beyond traditional treatment approaches. Spigel DR; Socinski MA J Thorac Oncol; 2013 May; 8(5):587-98. PubMed ID: 23546044 [TBL] [Abstract][Full Text] [Related]
55. Expression of PD-L1 in ovarian cancer and its synergistic antitumor effect with PARP inhibitor. Xue C; Xu Y; Ye W; Xie Q; Gao H; Xu B; Zhang D; Jiang J Gynecol Oncol; 2020 Apr; 157(1):222-233. PubMed ID: 31987601 [TBL] [Abstract][Full Text] [Related]
56. Realization of the therapeutic potential of CTLA-4 blockade in low-dose chemotherapy-treated tumor-bearing mice. Mokyr MB; Kalinichenko T; Gorelik L; Bluestone JA Cancer Res; 1998 Dec; 58(23):5301-4. PubMed ID: 9850053 [TBL] [Abstract][Full Text] [Related]
57. The evolution of checkpoint blockade as a cancer therapy: what's here, what's next? Shin DS; Ribas A Curr Opin Immunol; 2015 Apr; 33():23-35. PubMed ID: 25621841 [TBL] [Abstract][Full Text] [Related]
58. PARP inhibitor maintenance therapy for patients with platinum-sensitive recurrent ovarian cancer: a cost-effectiveness analysis. Smith HJ; Walters Haygood CL; Arend RC; Leath CA; Straughn JM Gynecol Oncol; 2015 Oct; 139(1):59-62. PubMed ID: 26303225 [TBL] [Abstract][Full Text] [Related]
59. Immune checkpoint protein inhibition for cancer: preclinical justification for CTLA-4 and PD-1 blockade and new combinations. Baksh K; Weber J Semin Oncol; 2015 Jun; 42(3):363-77. PubMed ID: 25965355 [TBL] [Abstract][Full Text] [Related]
60. PARPi Triggers the STING-Dependent Immune Response and Enhances the Therapeutic Efficacy of Immune Checkpoint Blockade Independent of BRCAness. Shen J; Zhao W; Ju Z; Wang L; Peng Y; Labrie M; Yap TA; Mills GB; Peng G Cancer Res; 2019 Jan; 79(2):311-319. PubMed ID: 30482774 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]