These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 26138405)
1. Can plasmonic Al nanoparticles improve absorption in triple junction solar cells? Yang L; Pillai S; Green MA Sci Rep; 2015 Jul; 5():11852. PubMed ID: 26138405 [TBL] [Abstract][Full Text] [Related]
2. Light Coupling and Trapping in Ultrathin Cu(In,Ga)Se2 Solar Cells Using Dielectric Scattering Patterns. van Lare C; Yin G; Polman A; Schmid M ACS Nano; 2015 Oct; 9(10):9603-13. PubMed ID: 26348324 [TBL] [Abstract][Full Text] [Related]
3. Enhancing the Photocurrent of Top-Cell by Ellipsoidal Silver Nanoparticles: Towards Current-Matched GaInP/GaInAs/Ge Triple-Junction Solar Cells. Bai Y; Yan L; Wang J; Su L; Yin Z; Chen N; Liu Y Nanomaterials (Basel); 2016 May; 6(6):. PubMed ID: 28335225 [TBL] [Abstract][Full Text] [Related]
4. Engineered optical properties of silver-aluminum alloy nanoparticles embedded in SiON matrix for maximizing light confinement in plasmonic silicon solar cells. Parashar PK; Komarala VK Sci Rep; 2017 Oct; 7(1):12520. PubMed ID: 28970541 [TBL] [Abstract][Full Text] [Related]
5. Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells. Xu R; Wang X; Song L; Liu W; Ji A; Yang F; Li J Opt Express; 2012 Feb; 20(5):5061-8. PubMed ID: 22418311 [TBL] [Abstract][Full Text] [Related]
6. Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes. Hylton NP; Li XF; Giannini V; Lee KH; Ekins-Daukes NJ; Loo J; Vercruysse D; Van Dorpe P; Sodabanlu H; Sugiyama M; Maier SA Sci Rep; 2013 Oct; 3():2874. PubMed ID: 24096686 [TBL] [Abstract][Full Text] [Related]
7. Plasmon-enhanced parabolic nanostructures for broadband absorption in ultra-thin crystalline Si solar cells. Pritom YA; Sikder DK; Zaman S; Hossain M Nanoscale Adv; 2023 Sep; 5(18):4986-4995. PubMed ID: 37705791 [TBL] [Abstract][Full Text] [Related]
8. Broadband photocurrent enhancement and light-trapping in thin film Si solar cells with periodic Al nanoparticle arrays on the front. Uhrenfeldt C; Villesen TF; Têtu A; Johansen B; Larsen AN Opt Express; 2015 Jun; 23(11):A525-38. PubMed ID: 26072877 [TBL] [Abstract][Full Text] [Related]
9. Optimal structure of light trapping in thin-film solar cells: dielectric nanoparticles or multilayer antireflection coatings? Zhao Y; Chen F; Shen Q; Zhang L Appl Opt; 2014 Aug; 53(23):5222-9. PubMed ID: 25320932 [TBL] [Abstract][Full Text] [Related]
10. Effects of Plasmonic Metal Core -Dielectric Shell Nanoparticles on the Broadband Light Absorption Enhancement in Thin Film Solar Cells. Yu P; Yao Y; Wu J; Niu X; Rogach AL; Wang Z Sci Rep; 2017 Aug; 7(1):7696. PubMed ID: 28794487 [TBL] [Abstract][Full Text] [Related]
11. Self-Assembled Monolayer of Wavelength-Scale Core-Shell Particles for Low-Loss Plasmonic and Broadband Light Trapping in Solar Cells. Dabirian A; Byranvand MM; Naqavi A; Kharat AN; Taghavinia N ACS Appl Mater Interfaces; 2016 Jan; 8(1):247-55. PubMed ID: 26726990 [TBL] [Abstract][Full Text] [Related]
12. Single-material zinc sulfide bi-layer antireflection coatings for GaAs solar cells. Leem JW; Jun DH; Heo J; Park WK; Park JH; Cho WJ; Kim DE; Yu JS Opt Express; 2013 Sep; 21 Suppl 5():A821-8. PubMed ID: 24104577 [TBL] [Abstract][Full Text] [Related]
13. Highly absorbing solar cells--a survey of plasmonic nanostructures. Dunbar RB; Pfadler T; Schmidt-Mende L Opt Express; 2012 Mar; 20 Suppl 2():A177-89. PubMed ID: 22418666 [TBL] [Abstract][Full Text] [Related]
14. Enhancing Photovoltaic Performance of Plasmonic Silicon Solar Cells with ITO Nanoparticles Dispersed in SiO Ho WJ; Chen GY; Liu JJ Materials (Basel); 2019 May; 12(10):. PubMed ID: 31100917 [TBL] [Abstract][Full Text] [Related]
15. Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application. Morawiec S; Holovský J; Mendes MJ; Müller M; Ganzerová K; Vetushka A; Ledinský M; Priolo F; Fejfar A; Crupi I Sci Rep; 2016 Mar; 6():22481. PubMed ID: 26935322 [TBL] [Abstract][Full Text] [Related]
16. Optimal design of light trapping in thin-film solar cells enhanced with graded SiNx and SiOxNy structure. Zhao Y; Chen F; Shen Q; Zhang L Opt Express; 2012 May; 20(10):11121-36. PubMed ID: 22565735 [TBL] [Abstract][Full Text] [Related]
17. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array. Chou SY; Ding W Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276 [TBL] [Abstract][Full Text] [Related]
18. Efficient broadband light absorption in thin-film a-Si solar cell based on double sided hybrid bi-metallic nanogratings. Subhan FE; Khan AD; Hilal FE; Khan AD; Khan SD; Ullah R; Imran M; Noman M RSC Adv; 2020 Mar; 10(20):11836-11842. PubMed ID: 35496636 [TBL] [Abstract][Full Text] [Related]
19. Damage Characteristics Analysis of Laser Ablation Triple-Junction Solar Cells Based on Electroluminescence Characteristics. Guo W; Ye J; Chang H; Yu C Sensors (Basel); 2024 Jul; 24(15):. PubMed ID: 39123932 [TBL] [Abstract][Full Text] [Related]
20. Quenching Mo optical losses in CIGS solar cells by a point contacted dual-layer dielectric spacer: a 3-D optical study. Rezaei N; Isabella O; Vroon Z; Zeman M Opt Express; 2018 Jan; 26(2):A39-A53. PubMed ID: 29402054 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]